通过https://www.cnblogs.com/tree1123/p/11243668.html 已经对consumer有了一定的了解。producer比consumer要简单一些。

一、旧版本producer

0.9.0.0版本以前,是由scala编写的旧版本producer。

入口类:kafka.producer.Producer

代码示例:

Properties properties = new Properties();
properties.put("metadata.broker.list", "kafka01:9092,kafka02:9092");
properties.put("serializer.class", "kafka.serializer.StringEncoder");
properties.put("request.requird.acks", "1");
ProducerConfig config = new ProducerConfig(properties);
Producer<String, String> producer = new Producer<String, String>(config);
KeyedMessage<String,String> msg = new KeyedMessage<String,String>("topic","hello");
Producer.send(msg);

旧版本是同步机制,等待响应。吞吐性很差。在0.9.0.0版本以后,正式下架了。

旧版本的方法:

send   发送
close 关闭
sync 异步发送 有丢失消息的可能性

二、新版本producer

旧版本producer由scala编写,0.9.0.0版本以后,新版本producer由java编写。

新版本主要入口类是:org.apache.kafka.clients.producer.KafkaProducer

常用方法:

send  实现消息发送主逻辑
close 关闭producer
metrics 获取producer的实时监控指标数据 比如发送消息的速率

Kafka producer要比consumer设计简单一些,主要就是向某个topic的某个分区发送一条消息。partitioner决定向哪个分区发送消息。用户指定key,默认的分区器会根据key的哈希值来选择分区,如果没有指定key就以轮询的方式选择分区。也可以自定义分区策略。

确定分区后,producer寻找到分区的leader,也就是该leader所在的broker,然后发送消息,leader会进行副本同步ISR。

producer会启两个线程,主线程封装ProducerRecord类,序列化后发给partitioner,然后发送到内存缓冲区。

另一个I/O线程,提取消息分batch统一发送给对应的broker。

示例代码:

Properties properties = new Properties();
properties.put("bootstrap.servers", "kafka01:9092,kafka02:9092");
properties.put("acks", "all");
properties.put("retries", 0);
properties.put("batch.size", 16384);
properties.put("linger.ms", 1);
properties.put("buffer.memory", 33554432);
properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
for (int i = 1; i <= 600; i++) {
kafkaProducer.send(new ProducerRecord<String, String>("z_test_20190430", "testkafka0613"+i));
System.out.println("testkafka"+i);
}
kafkaProducer.close();

1、构造Properties对象,bootstrap.servers key.serializer value.serializer是必须指定的。

2、使用Properties构造KafkaProducer对象。

3、构造ProducerRecord 指定topic 分区 key value。

4、KafkaProducer的send方法发送。

5、关闭KafkaProducer。

Properties主要参数:

bootstrap.servers 和consumer一样,指定部分broker即可。而且broker端如果没有配ip地址,要写成主机名。

key.serializer value.serializer 序列化参数 一定要全类名 没有key也必须设置。

acks 三个值

​ 0: producer完全不管broker的处理结果 回调也就没有用了 并不能保证消息成功发送 但是这种吞吐量最高

​ all或者-1: leader broker会等消息写入 并且ISR都写入后 才会响应,这种只要ISR有副本存活就肯定不会丢失,但吞 吐量最低。

​ 1: 默认的值 leader broker自己写入后就响应,不会等待ISR其他的副本写入,只要leader broker存活就不会丢失,即保证了不丢失,也保证了吞吐量。

buffer.memory 缓冲区大小 字节 默认是33554432 就是发送消息的内存缓冲区大小 过小的话会影响吞吐量

compression.type 设置是否压缩消息 默认值是none 压缩后可以降低IO开销提高吞吐,但是会增大CPU开销。

​ 支持三种: GZIP Snappy LZ4 性能 LZ4 > Snappy > GZIP

retries 发送消息重试的次数 默认0 不重试 重试可能造成重复发送 可能造成乱序

​ retry.backoff.ms 设置重试间隔 默认100毫秒

batch.size 调优重要的参数 batch小 吞吐量也会小 batch大 内存压力会大 默认值是16384 16KB

linger.ms 发送延时 默认是0 0的话不用等batch满就发送 延时的话可以提高吞吐 看具体情况进行调整

max.request.size producer能够发送最大消息的大小 默认1048576字节 如果消息很大 需要修改它

request.timeout.ms 发送请求后broker在规定时间返回 默认30秒 超过就是超时了。

Send方法

fire and forget 就是上边的示例

Properties properties = new Properties();
properties.put("bootstrap.servers", "kafka01:9092,kafka02:9092");
properties.put("acks", "all");
properties.put("retries", 0);
properties.put("batch.size", 16384);
properties.put("linger.ms", 1);
properties.put("buffer.memory", 33554432);
properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
for (int i = 1; i <= 600; i++) {
kafkaProducer.send(new ProducerRecord<String, String>("z_test_20190430", "testkafka0613"+i));
System.out.println("testkafka"+i);
}
kafkaProducer.close();

异步回调 不阻塞

Properties properties = new Properties();
properties.put("bootstrap.servers", "kafka01:9092,kafka02:9092");
properties.put("acks", "all");
properties.put("retries", 0);
properties.put("batch.size", 16384);
properties.put("linger.ms", 1);
properties.put("buffer.memory", 33554432);
properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
KafkaProducer<String, String> kafkaProducer = new KafkaProducer<String, String>(properties);
for (int i = 1; i <= 600; i++) {
kafkaProducer.send(new ProducerRecord<String, String>("z_test_20190430", "testkafka0613"+i),new Callback(){
public void onCompletion(RecordMetadata metadata, Exception e) {
if(e != null) {
e.printStackTrace();
} else {
System.out.println("The offset of the record we just sent is: " + metadata.offset());
}
}
});
System.out.println("testkafka"+i);
}
kafkaProducer.close();

同步发送 无限等待返回

producer.send(record).get()

重试机制

如果需要自定义重试机制,就要在回调里对不同异常区别对待,常见的几种如下:

可重试异常

LeaderNotAvailableException :分区的Leader副本不可用,这可能是换届选举导致的瞬时的异常,重试几次就可以恢复

NotControllerException:Controller主要是用来选择分区副本和每一个分区leader的副本信息,主要负责统一管理分区信息等,也可能是选举所致。

NetWorkerException :瞬时网络故障异常所致。

不可重试异常

SerializationException:序列化失败异常

RecordToolLargeException:消息尺寸过大导致。

示例代码:

 producer.send(myRecord,
new Callback() {
public void onCompletion(RecordMetadata metadata, Exception e) {
if(e ==null){
//正常处理逻辑
System.out.println("The offset of the record we just sent is: " + metadata.offset()); }else{ if(e instanceof RetriableException) {
//处理可重试异常
......
} else {
//处理不可重试异常
......
}
}
}
});
分区机制

partitioner决定向哪个分区发送消息。用户指定key,默认的分区器会根据key的哈希值来选择分区,如果没有指定key就以轮询的方式选择分区。也可以自定义分区策略。

对于有key的消息,java版本的producer自带的partitioner会根据murmur2算法计算消息key的哈希值。然后对总分区数求模得到消息要被发送到的目标分区号。

自定义分区策略:

创建一个类,实现org.apache.kafka.clients.producer.Partitioner接口

主要分区逻辑在Partitioner.partition中实现:通过topic key value 一同确定分区

在构造KafkaProducer得Properties中设置partitioner.class 为自定义类 注意是全类名

序列化机制

常用的serializer

ByteArraySerializer.class

ByteBufferSerializer.class

BytesSerializer.class

DoubleSerializer.class

IntegerSerializer.class

LongSerializer.class

StringSerializer.class

但是其他一些复杂的就需要自定义序列化:

1、定义数据格式

2、创建自定义序列化类,实现org.apache.kafka.common.serialization.Serializer接口

3、在KafkaProducer的Properties中设置key.serializer value.serializer为自定义类

以上均为单线程的情况,但producer是线程安全的,单线程适合分区较少的情况,分区较多可以多线程但对内存损耗较大。

更多实时计算,Kafka等相关技术博文,欢迎关注实时流式计算

Kafka之Producer的更多相关文章

  1. 【转】 详解Kafka生产者Producer配置

    粘贴一下这个配置,与我自己的程序做对比,看看能不能完善我的异步带代码:   -----------------------------------------    详解Kafka生产者Produce ...

  2. Kafka的Producer和Consumer源码学习

    先解释下两个概念: high watermark (HW) 它表示已经被commited的最后一个message offset(所谓commited, 应该是ISR中所有replica都已写入),HW ...

  3. Kafka学习-Producer和Customer

    在上一篇kafka入门的基础之上,本篇主要介绍Kafka的生产者和消费者. Kafka 生产者 kafka Producer发布消息记录到Kakfa集群.生产者是线程安全的,可以在多个线程之间共享生产 ...

  4. Error when sending message to topic test with key: null, value: 2 bytes with error: (org.apache.kafka.clients.producer.internals.ErrorLoggingCallback)

    windows下使用kafka遇到这个问题: Error when sending message to topic test with key: null, value: 2 bytes with ...

  5. kafka 客户端 producer 配置参数

    属性 描述 类型 默认值 bootstrap.servers 用于建立与kafka集群的连接,这个list仅仅影响用于初始化的hosts,来发现全部的servers.格式:host1:port1,ho ...

  6. Kafka遇到30042ms has passed since batch creation plus linger time at org.apache.kafka.clients.producer.internals.FutureRecordMetadata.valueOrError(FutureRecordMetadata.java:94)

    问题描述: 运行生产者线程的时候显示如下错误信息: Expiring 1 record(s) for XXX-0: 30042 ms has passed since batch creation p ...

  7. 057 Java中kafka的Producer程序实现

    1.需要启动的服务 这里启动的端口是9092. bin/kafka-console-consumer.sh --topic beifeng --zookeeper linux-hadoop01.ibe ...

  8. Kafka: Producer (0.10.0.0)

    转自:http://www.cnblogs.com/f1194361820/p/6048429.html 通过前面的架构简述,知道了Producer是用来产生消息记录,并将消息以异步的方式发送给指定的 ...

  9. 【Kafka】Producer配置

    名称 描述 类型 默认值 bootstrap.servers kafka集群地址,ip+端口,以逗号隔开.不管这边配置的是什么服务器,客户端会使用所有的服务器.配置的列表只会影响初始发现所有主机.配置 ...

  10. Kafka生产者producer简要总结

    Kafka producer在设计上要比consumer简单,不涉及复杂的组管理操作,每个producer都是独立进行工作的,与其他producer实例之间没有关联.Producer的主要功能就是向某 ...

随机推荐

  1. Linux关闭进程。

    一.shell命令根据端口后关闭指定进程. $(netstat -nlp | | awk '{print $7}' | awk -F"/" '{ print $1 }') nets ...

  2. Spring Cloud学习(一):Eureka服务注册与发现

    1.Eureka是什么 Eureka是Netflix开发的服务发现框架,本身是一个基于REST的服务,主要用于定位运行在AWS域中的中间层服务,以达到负载均衡和中间层服务故障转移的目的. Eureka ...

  3. Postgresql_fdw

    Postgresql_fdw 测试环境 Ubuntu 16.04 LTS云主机2台,主机名为pg1(192.168.0.34)和pg2(192.168.0.39). 安装postgresql 下面这个 ...

  4. 《ElasticSearch6.x实战教程》之父-子关系文档

    第七章-父-子关系文档 打虎亲兄弟,上阵父子兵. 本章作为复杂搜索的铺垫,介绍父子文档是为了更好的介绍复杂场景下的ES操作. 在非关系型数据库数据库中,我们常常会有表与表的关联查询.例如学生表和成绩表 ...

  5. linux 反弹shell

    Linux下反弹shell笔记 0x00 NC命令详解 在介绍如何反弹shell之前,先了解相关知识要点. nc全称为netcat,所做的就是在两台电脑之间建立链接,并返回两个数据流 可运行在TCP或 ...

  6. ASP.NET Core Web Api之JWT VS Session VS Cookie(二)

    前言 本文我们来探讨下JWT VS Session的问题,这个问题本没有过多的去思考,看到评论讨论太激烈,就花了一点时间去研究和总结,顺便说一句,这就是写博客的好处,一篇博客写出有的可能是经验积累,有 ...

  7. Vue中beforeRouterEnter的应用

    一般判断从哪个页面进入时需要判断路由,用到了beforeRouteEnter方法. 注意:在在内部获取不到外部的this,方法.变量等都获取不到.但是vm.XXXXX可以获取到 beforeRoute ...

  8. StringBuffer类的delete()方法和deleteCharAt()方法的区别

    引言 StringBuffer类的delete()方法和deleteCharAt()方法都是用来删除StringBuffer字符串中的字符 区别 1.对于delete(int start,int en ...

  9. Android通过辅助功能实现抢微信红包原理简单介绍

    简书文章:https://www.jianshu.com/p/e1099a94b979 附抢红包开源项目地址,代码已全改为Kotlin了,已适配到最新微信7.0.5版本,如果对你有所帮助赏个star吧 ...

  10. python 感悟

    * 优美胜于丑陋.* 显式胜于隐式.* 简单胜于复杂.* 复杂胜于难懂.* 扁平胜于嵌套.* 稀疏胜于紧密.* 可读性应当被重视.* 尽管实用性会打败纯粹性,特例也不能凌驾于规则之上.* 不要忽略任何 ...