numpy的基本维数操作API

  iwehdio的博客园:https://www.cnblogs.com/iwehdio/

1、np.copyto(dst, src)  copyto方法将数组src复制到dst中。如果两个数组的形状完全相同,则复制后两数组中的数据相同。如果src的维数n比dst的维数低,且与dst中的最后几个维度shape[:-n]相同,就将dst中每个形状与src相同的都复制为src。

>>> a = np.array([[[1,2,3],[4,5,6]],[[1,2,3],[4,5,6]]])  # (2,2,3)
>>> b = np.array([[7,8,9],[10,11,12]]) # (2,3)
>>> c = np.array([10])                      #(1,)
>>> np.copyto(a,b)
>>> a
array([[[ 7,  8,  9],
        [10, 11, 12]],
       [[ 7,  8,  9],
        [10, 11, 12]]])
>>> np.copyto(a,c)
>>> a
array([[[10, 10, 10],
        [10, 10, 10]],
       [[10, 10, 10],
        [10, 10, 10]]])

2、np.reshape(a, shape)  reshape方法将数组a在不改变数据的情况下改变形状。a表示目标数组,shape表示所要改变为的形状,可以为元组如(2,3),也可为列表如[2,3]。shape中某一维度的值为-1表示此维度的数据长度为自适应。但是shape改变的新数组大小必须与原数组相同。返回值为numpy数组。同时,可以使用a.reshape(shape),此时shape除了可为元组和列表外,也可以之间为用逗号间隔的数字2,3。

>>> a = np.arange(6)
>>> a
array([0, 1, 2, 3, 4, 5])
>>> np.reshape(a,(2, 3))
array([[0, 1, 2],
       [3, 4, 5]])
>>> np.reshape(a,(3,-1))
array([[0, 1],
       [2, 3],
       [4, 5]])
>>> a.reshape(6,1)
array([[0],
       [1],
       [2],
       [3],
       [4],
       [5]])

3、np.ravel(a)  raevl方法将数组a展平为一维数组,shape为(n, ),a为输入数组。同样的,也可以使用a.ravel(),注意不要丢掉括号。

>>> np.ravel(a)
array([0, 1, 2, 3, 4, 5])
>>> np.array([[4,5,6],[1,2,3]]).ravel()
array([4, 5, 6, 1, 2, 3])

4、a.flat[n]  flat方法将数组a按一维数组索引,如数据a的shape为(M, N),则索引n可取[0, M*N-1]。也可以取一个列表作为索引如a.flat[[q, w]],返回索引为q和w的数组。同时,还有a.flat=x可以把数组a中的所有值改为x,也可a.flat[[q,w]=x]对列表中的特定之进行改变。

>>> a = np.arange(1, 7).reshape(2, 3)
>>> a
array([[1, 2, 3],
[4, 5, 6]])
>>> a.flat[5]
6
>>> a.flat[[2,4]]
array([3, 5])
>>> a.flat = 3
>>> a
array([[3, 3, 3],
[3, 3, 3]])
>>> a.flat[[1,5]]=5
>>> a
array([[1, 5, 3],
[4, 5, 5]])

5、np.moveaxis(a, src, dst)  moveaxis方法将数组的轴进行移动。src表示所要移动的轴的索引,dst表示所要移动到的位置,都可以为列表对象进行对应移动。

需要注意的是,移动轴的含义是,把原来src索引位置的轴改为dst索引位置,而不是进行索引位置的交换。如shape为(2,3,4)的数组a经过b=np.moveaxis(a, 0, -1)后,b的shape为(3,4,2),也就是说其他轴按原来的顺序向前填充了,等价于np.moveaxis(x, [0, 1, 2], [-1, -3, -2])。此外,在索引更改后的数组与原数组对应的位置进行切片,切片的shape也有可能会与原数组不同而为其转置的shape。

>>> x = np.arange(0, 24).reshape(2, 3, 4)
>>> x
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]], [[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
>>> y=np.moveaxis(x, 0, -1)
>>> y
array([[[ 0, 12],
[ 1, 13],
[ 2, 14],
[ 3, 15]], [[ 4, 16],
[ 5, 17],
[ 6, 18],
[ 7, 19]], [[ 8, 20],
[ 9, 21],
[10, 22],
[11, 23]]])
>>> y.shape
(3, 4, 2)
>>> np.moveaxis(x, [0, 1, 2], [-1, -3, -2]).shape
(3, 4, 2)
>>> y[0,:,:]
array([[ 0, 12],
[ 1, 13],
[ 2, 14],
[ 3, 15]])
>>> x[:,0,:]
array([[ 0, 1, 2, 3],
[12, 13, 14, 15]])

可以看到,x和y都在shape为3的轴求该轴索引为0时的切片,得到的数组互为转置。但是对所进行moveaxis操作的shape为2的轴,按其轴索引进行切片,得到的数组与原数组相同。

moveaxis方法当只对一个轴进行操作时,也可由rollaxis方法实现,但是更推荐前者。

6、np.swapaxes(a, axis1, axis2)  swapaxes方法对数组a中的两个轴的位置进行互换,其他轴的位置不变。

>>> x = np.arange(0, 24).reshape(2, 3, 4)
>>> x.shape
(2, 3, 4)
>>> y = np.swapaxes(x,0,1)
>>> y
array([[[ 0, 1, 2, 3],
[12, 13, 14, 15]], [[ 4, 5, 6, 7],
[16, 17, 18, 19]], [[ 8, 9, 10, 11],
[20, 21, 22, 23]]])
>>> y.shape
(3, 2, 4)

7、np.transpose(a, axex=None)  transpose方法排列数组a的形状。当axex为None时,返回的是数组a的转置。当axex为数组a轴的索引值的排列,如shape为[1,2,3,4]的数组a的axex为元组(2,1,3,0)或列表[2,1,3,0]时,表示数组a的shape变为了(第2轴,第1轴,第3轴,第0轴)的长度。

>>> a = np.ones((1, 2, 3, 4))
>>> np.transpose(a).shape
(4, 3, 2, 1)
>>> np.transpose(a,(2,1,3,0)).shape
(3, 2, 4, 1)
>>> a.T.shape
(4, 3, 2, 1)

当axex为None时,np.transpose(a)与a.T是等价的。

8、np.atleast_1d(array1,array2,...)  atleast_1d方法将输入视为至少一维的数组,将输入数组放置到一个列表里。与直接创建list不同的是,把输入的每个对象都转换为了数组对象。atleast_2d方法将输入视为至少二维的数组,atleast_3d方法将输入视为至少三维的数组。其实就是把输入数组中维度高于一维/二维/三维的数组原样输出,低于一维/二维/三维的数组升至一维/二维/三维输出,把结果放入一个列表中。

>>> x = np.arange(0, 24).reshape(2, 3, 4)
>>> np.atleast_1d(x,[2,3],1)
[array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]], [[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]]),
array([2, 3]), array([1])]
>>> [x,[2,3],1]
[array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]], [[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]]),
[2, 3], 1]
>>> np.atleast_2d(x,[2,3],1)
[array([[[ 0,  1,  2,  3],
         [ 4,  5,  6,  7],
         [ 8,  9, 10, 11]],         [[12, 13, 14, 15],
         [16, 17, 18, 19],
         [20, 21, 22, 23]]]), array([[2, 3]]), array([[1]])]
>>> np.atleast_3d(x,[2,3],1)
[array([[[ 0,  1,  2,  3],
         [ 4,  5,  6,  7],
         [ 8,  9, 10, 11]],         [[12, 13, 14, 15],
         [16, 17, 18, 19],
         [20, 21, 22, 23]]]),
     array([[[2],[3]]]), array([[[1]]])]

atleast_1d中,[2, 3]被转换为shape为(2, );atleast_1d中,[2, 3]被转换为shape为(1, 2);atleast_1d中,[2, 3]被转换为shape为(1, 2, 1)。先把整个数组当作一个元素升一维,再把数组中的每个数字当作一个元素升一维。

9、np.broadcast(a, b)  broadcast方法创建并返回一个数组a和b的广播对象y。y只能通过迭代器获取内容,并且有.shape、.index等方法,表示广播结果的形状和索引。广播是指,如果数组a和b的形状不相同则对不相同的轴的值进行排列组合。

>>> a = np.array([[1],[2]])
>>> b = np.array([[4, 5, 6,7]])
>>> a.shape, b.shape
((2, 1), (1, 4))
>>> y = np.broadcast(a, b)
>>> y
<numpy.broadcast at 0x213aa462050>
>>> y.shape
(2, 4)
>>> for (u,v) in y:
print(u, v, '\t', b.index)
1 4 1
1 5 2
1 6 3
1 7 4
2 4 5
2 5 6
2 6 7
2 7 8

10、np.broadcast_to(a, shape)  broadcast_to方法把数组a广播并返回为形状为shape的数组。shape的形式应为new_shape+a.shape,即如需要把a广播为(m, n)次,a.shape=(q, w),则shape应为(m,n,q,w)。

>>> a = np.array([[1,2],[3,4]])
>>> a.shape
(2, 2)
>>> b = np.broadcast_to(a, (3,3,2,2))
array([[[[1, 2],
[3, 4]],
[[1, 2],
[3, 4]],
[[1, 2],
[3, 4]]],
[[[1, 2],
[3, 4]],
[[1, 2],
[3, 4]],
[[1, 2],
[3, 4]]],
[[[1, 2],
[3, 4]],
[[1, 2],
[3, 4]],
[[1, 2],
[3, 4]]]])
>>> b.shape
(6, 4, 2, 2)

11、np.broadcast_array(a, b)  broadcast_array方法获取广播的数组,返回的是包含广播数组的列表。

>>> a = np.array([[1,2,3]])
>>> b = np.array([[4],[5]])
>>> np.broadcast_arrays(a, b)
[array([[1, 2, 3],
[1, 2, 3]]),
array([[4, 4, 4],
[5, 5, 5]])]

12、np.expand_dims(a, axis)  expand_dims方法返回扩展输入数组a的形状的数组,在axis轴位置添加新轴。

>>> x = np.array([[1,2],[3,4]])
>>> x.shape
(2, 2)
>>> y = np.expand_dims(x, 0)
>>> y
array([[[1, 2],
[3, 4]]])
>>> y.shape
(1, 2, 2)
>>> z = np.expand_dims(x, 1)
>>> z
array([[[1, 2]],
[[3, 4]]])
>>> z.shape
(2, 1, 2)
>>> w = np.expand_dims(x, 2)
>>> w
array([[[1],
[2]],
[[3],
[4]]])
>>> w.shape
(2, 2, 1)

13、在reshape等API中,都有order{'C', 'F', 'A'}参数,默认为'C'。其含义主要影响数组的索引速度,'C'表示使用类似C语言的索引顺序读取/写入元素,最后一个轴索引更改最快,回到第一个轴索引更改最快。 'F'表示使用类似Fortran语言的索引顺序读取/写入元素,第一个索引更改最快,最后一个索引更改最慢。 'C'和'F'选项不考虑基础数组的内存布局,仅指索引的顺序。 'A'表示如果数组在内存中是连续的,则以类似于Fortran语言的索引顺序读取/写入元素,否则为类似于C语言的顺序。

参考:numpy中文文档:https://www.numpy.org.cn/reference/

   numpy英文文档:https://numpy.org/doc/1.17/reference/index.html

iwehdio的博客园:https://www.cnblogs.com/iwehdio/

numpy的基本API(二)——维数操作的更多相关文章

  1. 免费开源的DotNet二维码操作组件ThoughtWorks.QRCode(.NET组件介绍之四)

    在生活中有一种东西几乎已经快要成为我们的另一个电子”身份证“,那就是二维码.无论是在软件开发的过程中,还是在普通用户的日常中,几乎都离不开二维码.二维码 (dimensional barcode) , ...

  2. DotNet二维码操作组件ThoughtWorks.QRCode

    DotNet二维码操作组件ThoughtWorks.QRCode 在生活中有一种东西几乎已经快要成为我们的另一个电子"身份证",那就是二维码.无论是在软件开发的过程中,还是在普通用 ...

  3. python的二维数组操作

    需要在程序中使用二维数组,网上找到一种这样的用法: ? 1 2 3 4 5 6 #创建一个宽度为3,高度为4的数组 #[[0,0,0], # [0,0,0], # [0,0,0], # [0,0,0] ...

  4. 06-01 Java 二维数组格式、二维数组内存图解、二维数组操作

    二维数组格式1 /* 二维数组:就是元素为一维数组的一个数组. 格式1: 数据类型[][] 数组名 = new 数据类型[m][n]; m:表示这个二维数组有多少个一维数组. n:表示每一个一维数组的 ...

  5. HihoCoder - 1336 二维数状数组(单点更新 区间查询)

    You are given an N × N matrix. At the beginning every element is 0. Write a program supporting 2 ope ...

  6. 谷歌api 二维码生成 实例

    谷歌提供的二维码生成器接口,非常实用!分享给大家 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ...

  7. numpy基础教程--将二维数组转换为一维数组

    1.导入相应的包,本系列教程所有的np指的都是numpy这个包 1 # coding = utf-8 2 import numpy as np 3 import random 2.将二维数组转换为一维 ...

  8. 整理:python的二维数组操作

    Python中初始化一个5 x 3每项为0的数组,最好方法是: multilist = [[0 for col in range(5)] for row in range(3)] 如果初始化一个二维数 ...

  9. python二维码操作:QRCode和MyQR入门

    1.QRCode QRCode最简单的使用 import qrcode qrcode.make("第一个二维码").get_image().show() 根据文本生成二维码并且直接 ...

随机推荐

  1. element - ui tree

    一行代码两行泪,没有外网真可怕!好久没写博客了,更新一把. <template> <div> <el-tree :data="data" :props ...

  2. JDBD连接MySQL中的驱动与时区问题

    1.在进行jdbc与mysql连接的时候应注意,加载驱动的方式根据MySQL版本内容来说 有变化 5.7版本之前: String driver= "com.mysql.jdbc.Driver ...

  3. Worktile正式发布全新研发产品!

    经过近一年时间的打磨,Worktile研发产品正式发布啦!和以往Worktile版本升级不同的是,这是一个全新的产品形态,目前已上线 Agile(敏捷开发).Pipe(持续交付).Testhub(测试 ...

  4. Nginx Linux和Windows安装教程

    前言 本篇文章主要介绍的是Nginx Linux环境和Windows的安装教程. Nginx 介绍 Nginx("engine x")是一款是由俄罗斯的程序设计师Igor Syso ...

  5. AV时间戳dts,pts。从ffmpeg解码过程看过来。

    解码过程中,dts由媒体流读入的包推动(解码包中的dts标记),dts在前进.pts是在dts前进到某处(截点)而进行动作的标记. 物理时间自然流逝,dts可以被控制同步与物理时间同一脚步节奏,也可以 ...

  6. C#控制打印机通过不同纸盒/进纸口进纸打印

    通常我们是通过程序操作打印机打印我们设置好的内容,但基本都是打印机默认进纸口打印:最近有一个通过C#程序控制两个进纸口分别进一张纸进行打印的需求,通过偿失找到了解决方案如下: 关于C#调用打印机打印的 ...

  7. vux组件的全局注册引入

    安装好vux后,要引入全局组件是要在main.js中使用Vue.component引入的,不能直接使用Vue.use,不能直接使用Vue.use,不能直接使用Vue.use import router ...

  8. Handler+Looper+MessageQueue深入详解

    概述:Android中的异步处理机制由四部分组成:Handler+Looper+MessageQueue+message,用于实现线程间的通信. 用到的概念: Handler: 主要作用是发送消息和处 ...

  9. 2019-9-9:渗透测试,基础学习,pydictor使用,sql盲注,docker使用,笔记

    pydictor,强大的密码生成工具,可以合并密码字典,词频统计,去重,枚举数字字典生成字典python3 pydictor.py -base d --len 4 4 生成纯数字4位密码python3 ...

  10. (四十四)golang--协程(goroutine)和管道(channel)相结合实例

    统计1-8000之间的素数. 整体框架: 说明:有五个协程,三个管道.其中一个协程用于写入数字到intChan管道中,另外四个用于取出intChan管道中的数字并判断是否是素数,然后将素数写入到pri ...