为了了解,上来先看几篇中文博客进行简单了解:

内容摘录:

  • 通信性能(应该主要侧重延迟)是pcie switch > 同 root complex (一个cpu接几个卡) > 不同root complex(跨cpu 走qpi)。ib的gpu direct rdma比跨cpu要快,所以甚至单机八卡要按cpu分成两组,每组一个switch,下面四个卡,一个ib,不通过cpu的qpi通信,而是通过ib通信。- 摘自评论
  • 对于多个GPU卡之间相互通信,硬件层面上的实现有Nvlink、PCIe switch(不经过CPU)、Infiniband、以及PCIe Host Bridge(通常就是借助CPU进行交换)这4种方式。而NCCL是Nvidia在软件层面对这些通信方式的封装。

保持更新,更多内容,请参考cnblogs.com/xuyaowen;

PCIe 速率

z390 芯片组资料:

https://ark.intel.com/content/www/cn/zh/ark/products/133293/intel-z390-chipset.html

P2P 显卡通信性能测试:

cuda/samples/1_Utilities/p2pBandwidthLatencyTest

nvidia 驱动安装:

https://www.cnblogs.com/xuyaowen/p/nvidia-driver-cuda-installation.html

nccl 编译安装过程:

git clone git@github.com:NVIDIA/nccl.git

cd nccl

make -j src.build (进行编译)

cd build

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/yourname/nccl/build/lib # 添加环境变量;也可以配置环境变量.bashrc;

export C_INCLUDE_PATH=/home/yourname/nccl/build/include (设置 C 头文件路径)

export CPLUS_INCLUDE_PATH=/home/yourname/nccl/build/include (设置C++头文件路径)

测试是否安装成功:

git clone https://github.com/NVIDIA/nccl-tests.git
cd nccl-tests 
make CUDA_HOME=/path/to/cuda NCCL_HOME=/path/to/nccl (具体编译,可以参考官方文档)
./build/all_reduce_perf -b 8 -e 256M -f 2 -g <ngpus>

才是

NCCL(Nvidia Collective multi-GPU Communication Library) Nvidia英伟达的Multi-GPU多卡通信框架NCCL 学习;PCIe 速率调研;的更多相关文章

  1. 基于英伟达Jetson TX1的GPU处理平台

    基于英伟达Jetson TX1 GPU的HDMI图像输入的深度学习套件 [309] 本平台基于英伟达的Jetson TX1视觉计算的全功能开发板,配合本公司研发的HDMI输入图像采集板:Jetson ...

  2. 英伟达GPU 嵌入式开发平台

    英伟达GPU  嵌入式开发平台 1.         JETSON TX1 开发者组件 JETSON TX1 开发者组件是视觉计算的全功能 开发平台,旨在让您能够快速地安装和运行. 该组件带有 Lin ...

  3. 玩深度学习选哪块英伟达 GPU?有性价比排名还不够!

    本文來源地址:https://www.leiphone.com/news/201705/uo3MgYrFxgdyTRGR.html 与“传统” AI 算法相比,深度学习(DL)的计算性能要求,可以说完 ...

  4. 英伟达GPU虚拟化---申请英伟达测试License

    此文基于全新的License 2.0系统,针对vGPU License的试用申请以及软件下载和License管理进行了详细的说明,方便今后我们申请测试License,快速验证GPU的功能. 试用步骤: ...

  5. Linux查看英伟达GPU信息

    命令: nvidia-smi 结果:

  6. 学习笔记︱Nvidia DIGITS网页版深度学习框架——深度学习版SPSS

    DIGITS: Deep Learning GPU Training System1,是由英伟达(NVIDIA)公司开发的第一个交互式深度学习GPU训练系统.目的在于整合现有的Deep Learnin ...

  7. MLHPC 2018 | Aluminum: An Asynchronous, GPU-Aware Communication Library Optimized for Large-Scale Training of Deep Neural Networks on HPC Systems

    这篇文章主要介绍了一个名为Aluminum通信库,在这个库中主要针对Allreduce做了一些关于计算通信重叠以及针对延迟的优化,以加速分布式深度学习训练过程. 分布式训练的通信需求 通信何时发生 一 ...

  8. Aluminum: An Asynchronous, GPU-Aware Communication Library Optimized for Large-Scale Training of Deep Neural Networks on HPC Systems

    本文发表在MLHPC 2018上,主要介绍了一个名为Aluminum通信库,这个库针对Allreduce做了一些关于计算通信重叠以及针对延迟的优化,以加速分布式深度学习训练过程. 分布式训练的通信需求 ...

  9. GPU 编程入门到精通(五)之 GPU 程序优化进阶

    博主因为工作其中的须要,開始学习 GPU 上面的编程,主要涉及到的是基于 GPU 的深度学习方面的知识.鉴于之前没有接触过 GPU 编程.因此在这里特地学习一下 GPU 上面的编程. 有志同道合的小伙 ...

随机推荐

  1. 非常详细的 (VMware安装Centos7超详细过程)

    本篇文章主要介绍了VMware安装Centos7超详细过程(图文),具有一定的参考价值,感兴趣的小伙伴们可以参考一下 1.软硬件准备 软件:推荐使用VMwear,我用的是VMwear 12 镜像:Ce ...

  2. C#开发微信小程序(二)

    导航:C#开发微信小程序系列 关于小程序项目结构,框架介绍,组件说明等,请查看微信小程序官方文档,关于以下贴出来的代码部分我只是截取了一些片段,方便说明问题,如果需要查看完整源代码,可以在我的项目库中 ...

  3. 用Python在25行以下代码实现人脸识别

    在本文中,我们将看到一种使用Python和开放源码库开始人脸识别的非常简单的方法. OpenCV OpenCV是最流行的计算机视觉库.最初是用C/C++编写的,现在它提供了Python的API. Op ...

  4. C#构造方法(构造函数)

    构造方法特点: 一 ,与类同名 public class Product { public int ID { get; set; } public String NAME { get; set; } ...

  5. #r语言(二)笔记

    #r语言(二)笔记 #早复习 #概述:R是用于统计分析.绘图的语言和操作环境 #对象: #数据类型--统称为对象 #向量(vector):用于存储数值型.字符型或逻辑型数据的一维数组. #定义向量: ...

  6. 关于字符串的格式化----format与%

    格式化字符串一般有两种方法 1.%(d整数,s字符,f浮点数) 2.format 用处极为广泛且限制不多 注意:第一种对于数组的传递会报TypeError,所以必须传递数组 a = (1, 2, 3) ...

  7. 如何在Oracle 12C中Drop/Truncate多个分区 (Doc ID 1482264.1)

    How to Drop/Truncate Multiple Partitions in Oracle 12C (Doc ID 1482264.1) APPLIES TO: Oracle Databas ...

  8. alluxio 信息索引

    最近要使用到 alluxio,发现网上还是有一些文档很是不错,现在通过这篇文章进行索引一下,进行备忘: https://edgedef.com/2017/08/17/alluxio-%E5%B0%8F ...

  9. Unity3D VidoePlayer 加载StreamingAssets下视频

    using System.Collections;using System.Collections.Generic;using UnityEngine;using UnityEngine.UI;usi ...

  10. flex布局使用

    什么是flex布局 flex是flexible Box的缩写,意味"弹性盒子",用来为盒子状模型提供最大的灵活性 任何一个盒子都可以指定为flex布局 .box{ display: ...