之前一篇文章中我们讲了基于Mysql8的读写分离(文末有链接),这次来说说分库分表的实现过程。

概念解析

垂直分片

按照业务拆分的方式称为垂直分片,又称为纵向拆分,它的核心理念是专库专用。 在拆分之前,一个数据库由多个数据表构成,每个表对应着不同的业务。而拆分之后,则是按照业务将表进行归类,分布到不同的数据库中,从而将压力分散至不同的数据库。 下图展示了根据业务需要,将用户表和订单表垂直分片到不同的数据库的方案。

垂直分片往往需要对架构和设计进行调整。通常来讲,是来不及应对互联网业务需求快速变化的;而且,它也并无法真正的解决单点瓶颈。 垂直拆分可以缓解数据量和访问量带来的问题,但无法根治。如果垂直拆分之后,表中的数据量依然超过单节点所能承载的阈值,则需要水平分片来进一步处理。

水平分片

水平分片又称为横向拆分。 相对于垂直分片,它不再将数据根据业务逻辑分类,而是通过某个字段(或某几个字段),根据某种规则将数据分散至多个库或表中,每个分片仅包含数据的一部分。 例如:根据主键分片,偶数主键的记录放入0库(或表),奇数主键的记录放入1库(或表),如下图所示。

水平分片从理论上突破了单机数据量处理的瓶颈,并且扩展相对自由,是分库分表的标准解决方案。

开发准备

分库分表常用的组件就是shardingsphere,目前已经是apache顶级项目,这次我们使用springboot2.1.9 + shardingsphere4.0.0-RC2(均为最新版本)来完成分库分表的操作。

假设有一张订单表,我们需要将它分成2个库,每个库三张表,根据id字段取模确定最终数据的位置,数据库环境配置如下:

  • 172.31.0.129

    • blog

      • t_order_0
      • t_order_1
      • t_order_2
  • 172.31.0.131
    • blog

      • t_order_0
      • t_order_1
      • t_order_2

三张表的逻辑表为t_order,大家可以根据建表语句准备好其他所有数据表。

DROP TABLE IF EXISTS `t_order_0;
CREATE TABLE `t_order_0` (
  `id` bigint(20) NOT NULL,
  `name` varchar(255) DEFAULT NULL COMMENT '名称',
  `type` varchar(255) DEFAULT NULL COMMENT '类型',
  `gmt_create` timestamp NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '创建时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;

注意,千万不能将主键的生成规则设置成自增长,需要按照一定规则来生成主键,这里使用shardingsphere中的SNOWFLAKE俗称雪花算法来生成主键

代码实现

  • 修改pom.xml,引入相关组件
<properties>
        <java.version>1.8</java.version>
        <mybatis-plus.version>3.1.1</mybatis-plus.version>
        <sharding-sphere.version>4.0.0-RC2</sharding-sphere.version>
    </properties>

    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-web</artifactId>
        </dependency>

        <dependency>
            <groupId>org.mybatis.spring.boot</groupId>
            <artifactId>mybatis-spring-boot-starter</artifactId>
            <version>2.0.1</version>
        </dependency>

        <dependency>
            <groupId>mysql</groupId>
            <artifactId>mysql-connector-java</artifactId>
            <version>8.0.15</version>
        </dependency>

        <dependency>
            <groupId>com.baomidou</groupId>
            <artifactId>mybatis-plus-boot-starter</artifactId>
            <version>${mybatis-plus.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.shardingsphere</groupId>
            <artifactId>sharding-jdbc-spring-boot-starter</artifactId>
            <version>${sharding-sphere.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.shardingsphere</groupId>
            <artifactId>sharding-jdbc-spring-namespace</artifactId>
            <version>${sharding-sphere.version}</version>
        </dependency>

        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <optional>true</optional>
        </dependency>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-starter-test</artifactId>
            <scope>test</scope>
        </dependency>
    </dependencies>

    <build>
        <plugins>
            <plugin>
                <groupId>org.springframework.boot</groupId>
                <artifactId>spring-boot-maven-plugin</artifactId>
            </plugin>
        </plugins>
    </build>
  • 配置mysql-plus
    @Configuration
    @MapperScan("com.github.jianzh5.blog.mapper")
    public class MybatisPlusConfig {

            /**
             * 攻击 SQL 阻断解析器
             */
            @Bean
            public PaginationInterceptor paginationInterceptor(){
                    PaginationInterceptor paginationInterceptor = new PaginationInterceptor();
                    List<ISqlParser> sqlParserList = new ArrayList<>();
                    sqlParserList.add(new BlockAttackSqlParser());

                    paginationInterceptor.setSqlParserList(sqlParserList);
                    return new PaginationInterceptor();
            }

            /**
             * SQL执行效率插件
             */
            @Bean
            // @Profile({"dev","test"})
            public PerformanceInterceptor performanceInterceptor() {
                    return new PerformanceInterceptor();
            }
    }
  • 编写实体类Order
    @Data
    @TableName("t_order")
    public class Order {
            private Long id;

            private String name;

            private String type;

            private Date gmtCreate;

    }
  • 编写DAO层,OrderMapper
    /**
     * 订单Dao层
     */
    public interface OrderMapper extends BaseMapper<Order> {

    }
  • 编写接口及接口实现
    public interface OrderService extends IService<Order> {

    }

    /**
     * 订单实现层
     * @author jianzh5
     * @date 2019/10/15 17:05
     */
    @Service
    public class OrderServiceImpl extends ServiceImpl<OrderMapper, Order> implements OrderService {

    }
  • 配置文件(配置说明见备注)
    server.port=8080

    # 配置ds0 和ds1两个数据源
    spring.shardingsphere.datasource.names = ds0,ds1

    #ds0 配置
    spring.shardingsphere.datasource.ds0.type = com.zaxxer.hikari.HikariDataSource
    spring.shardingsphere.datasource.ds0.driver-class-name = com.mysql.cj.jdbc.Driver
    spring.shardingsphere.datasource.ds0.jdbc-url = jdbc:mysql://192.168.249.129:3306/blog?characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=false
    spring.shardingsphere.datasource.ds0.username = root
    spring.shardingsphere.datasource.ds0.password = 000000

    #ds1 配置
    spring.shardingsphere.datasource.ds1.type = com.zaxxer.hikari.HikariDataSource
    spring.shardingsphere.datasource.ds1.driver-class-name = com.mysql.cj.jdbc.Driver
    spring.shardingsphere.datasource.ds1.jdbc-url = jdbc:mysql://192.168.249.131:3306/blog?characterEncoding=utf8&zeroDateTimeBehavior=convertToNull&useSSL=false
    spring.shardingsphere.datasource.ds1.username = root
    spring.shardingsphere.datasource.ds1.password = 000000

    # 分库策略 根据id取模确定数据进哪个数据库
    spring.shardingsphere.sharding.default-database-strategy.inline.sharding-column = id
    spring.shardingsphere.sharding.default-database-strategy.inline.algorithm-expression = ds$->{id % 2}

    # 具体分表策略
    # 节点 ds0.t_order_0,ds0.t_order_1,ds1.t_order_0,ds1.t_order_1
    spring.shardingsphere.sharding.tables.t_order.actual-data-nodes = ds$->{0..1}.t_order_$->{0..2}
    # 分表字段id
    spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.sharding-column = id
    # 分表策略 根据id取模,确定数据最终落在那个表中
    spring.shardingsphere.sharding.tables.t_order.table-strategy.inline.algorithm-expression = t_order_$->{id % 3}

    # 使用SNOWFLAKE算法生成主键
    spring.shardingsphere.sharding.tables.t_order.key-generator.column = id
    spring.shardingsphere.sharding.tables.t_order.key-generator.type = SNOWFLAKE

    #spring.shardingsphere.sharding.binding-tables=t_order

    spring.shardingsphere.props.sql.show = true
  • 编写单元测试,查看结果是否正确
    public class OrderServiceImplTest extends BlogApplicationTests {
        @Autowired
        private OrderService orderService;

        @Test
        public void testSave(){
            for (int i = 0 ; i< 100 ; i++){
                Order order = new Order();
                order.setName("电脑"+i);
                order.setType("办公");
                orderService.save(order);
            }
        }

        @Test
        public void testGetById(){
            long id = 1184489163202789377L;
            Order order  = orderService.getById(id);
            System.out.println(order.toString());
        }
    }
  • 在数据表中查看数据,确认数据正常插入

  • 至此分库分表开发完成

往期回顾

SpringBoot+Mysql8实现读写分离

欢迎关注我的个人公众号:JAVA日知录

Springboot2.x + ShardingSphere 实现分库分表的更多相关文章

  1. 分库分表(5) ---SpringBoot + ShardingSphere 实现分库分表

    分库分表(5)--- ShardingSphere实现分库分表 有关分库分表前面写了四篇博客: 1.分库分表(1) --- 理论 2.分库分表(2) --- ShardingSphere(理论) 3. ...

  2. 分库分表(7)--- SpringBoot+ShardingSphere实现分库分表 + 读写分离

    分库分表(7)--- ShardingSphere实现分库分表+读写分离 有关分库分表前面写了六篇博客: 1.分库分表(1) --- 理论 2.分库分表(2) --- ShardingSphere(理 ...

  3. 在多数据源中对部分数据表使用shardingsphere进行分库分表

    背景 近期在项目中需要使用多数据源,其中有一些表的数据量比较大,需要对其进行分库分表:而其他数据表数据量比较正常,单表就可以. 项目中可能使用其他组的数据源数据,因此需要多数据源支持. 经过调研多数据 ...

  4. 分库分表(6)--- SpringBoot+ShardingSphere实现分表+ 读写分离

    分库分表(6)--- ShardingSphere实现分表+ 读写分离 有关分库分表前面写了五篇博客: 1.分库分表(1) --- 理论 2.分库分表(2) --- ShardingSphere(理论 ...

  5. 分库分表(3) ---SpringBoot + ShardingSphere 实现读写分离

    分库分表(3)---ShardingSphere实现读写分离 有关ShardingSphere概念前面写了两篇博客: 1.分库分表(1) --- 理论 2. 分库分表(2) --- ShardingS ...

  6. 分库分表(4) ---SpringBoot + ShardingSphere 实现分表

    分库分表(4)--- ShardingSphere实现分表 有关分库分表前面写了三篇博客: 1.分库分表(1) --- 理论 2.分库分表(2) --- ShardingSphere(理论) 3.分库 ...

  7. mysql 分库分表 ~ ShardingSphere生态圈

    一  简介   Apache ShardingSphere是一款开源的分布式数据库中间件组成的生态圈二 成员包含   Sharding-JDBC是一款轻量级的Java框架,在JDBC层提供上述核心功能 ...

  8. 分库分表利器——sharding-sphere

    背景 得不到的东西让你彻夜难眠,没有尝试过的技术让我跃跃欲试. 本着杀鸡焉用牛刀的准则,我们倡导够用就行,不跟风,不盲从. 所以,结果就是我们一直没有真正使用分库分表.曾经好几次,感觉没有分库分表(起 ...

  9. 分库分表(2) --- ShardingSphere(理论)

    ShardingSphere---理论 ShardingSphere在中小企业需要分库分表的时候用的会比较多,因为它维护成本低,不需要额外增派人手;而且目前社区也还一直在开发和维护,还算是比较活跃. ...

随机推荐

  1. 【Offer】[62] 【圆圈中最后剩下的数字】

    题目描述 思路分析 测试用例 Java代码 代码链接 题目描述 0,1,,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字.求出这个圆圈里剩下的最后一个数字. 牛客网刷题地址 ...

  2. Zabbix4.2对IIS监控摸索记录

    Zabbix是很强大,但是相关的细节技术文档貌似很少,摸索之路就显得异常难. 度娘搜了下,关于Zabbix对IIS的监控资料确实有,确实也讲如何操作了,但是细细按照对方的要求操作下,总是缺数据,no ...

  3. Redis缓存穿透、缓存雪崩、并发问题分析与解决方案

    (一)缓存和数据库间数据一致性问题 分布式环境下(单机就不用说了)非常容易出现缓存和数据库间的数据一致性问题,针对这一点的话,只能说,如果你的项目对缓存的要求是强一致性的,那么请不要使用缓存.我们只能 ...

  4. Android图片的缩放效果

    一.概述 Android 图片要实现:手势滑动,双击变大,多点触控的效果. 其实是有一定难度的,我们需要用Matrix ,GestureDetector 等等需要完成一个复杂的逻辑才能实现,然而今天我 ...

  5. String、StringBuffer、StringBulider的区别

    1.线程安全性: 线程安全:String.StringBuffer 线程不安全:StringBulider 2.执行效率 StringBulider最快,Stringbuffer次之,String最差 ...

  6. charles SSL代理设置

    本文参考:charles SSL代理设置 charles SSL代理设置 SSL Proxying Srtting 这里最常用的设置就是第一个ssl proxying,这里记录了需要捕获哪些ssl的信 ...

  7. 【Sentinel】sentinel 集成 apollo 最佳实践

    [Sentinel]sentinel 集成 apollo 最佳实践 前言   在 sentinel 的控制台设置的规则信息默认都是存在内存当中的.所以无论你是重启了 sentinel 的客户端还是 s ...

  8. Hadoop集群常用的shell命令

    Hadoop集群常用的shell命令 Hadoop集群常用的shell命令 查看Hadoop版本 hadoop -version 启动HDFS start-dfs.sh 启动YARN start-ya ...

  9. [Leetcode] 第148题 排序链表

    一.题目描述 在 O(n log n) 时间复杂度和常数级空间复杂度下,对链表进行排序. 示例 1: 输入: 4->2->1->3 输出: 1->2->3->4 示 ...

  10. js 混合排序(类似中文手机操作系统中的通讯录排序)

    在阳光明媚最适合打盹的下午, 特意静音的手机竟然动起来了, 你没看错, 它震动了.... 上帝(顾客)来电, "报表查询系统左侧树状菜单中设备的中文名称不能排序", 要增加排序功能 ...