一、Scrapy框架简介

Scrapy 是用 Python 实现的一个为了爬取网站数据、提取结构性数据而编写的应用框架。

Scrapy 常应用在包括数据挖掘,信息处理或存储历史数据等一系列的程序中。

通常我们可以很简单的通过 Scrapy 框架实现一个爬虫,抓取指定网站的内容或图片。

二、Scrapy架构图(绿线是数据流向)

  • Scrapy Engine(引擎): 负责Spider、ItemPipeline、Downloader、Scheduler中间的通讯,信号、数据传递等。

  • Scheduler(调度器): 它负责接受引擎发送过来的Request请求,并按照一定的方式进行整理排列,入队,当引擎需要时,交还给引擎(主要功能url去重,构建url队列)。

  • Downloader(下载器):负责下载Scrapy Engine(引擎)发送的所有Requests请求,并将其获取到的Responses交还给Scrapy Engine(引擎),由引擎交给Spider来处理,

  • Spider(爬虫):它负责处理所有Responses,从中分析提取数据,获取Item字段需要的数据,并将需要跟进的URL提交给引擎,再次进入Scheduler(调度器).

  • Item Pipeline(管道):它负责处理Spider中获取到的Item,并进行进行后期处理(详细分析、过滤、存储等)的地方。

  • Downloader Middlewares(下载中间件):你可以当作是一个可以自定义扩展下载功能的组件。

  • Spider Middlewares(Spider中间件):你可以理解为是一个可以自定扩展和操作引擎和Spider中间通信的功能组件(比如进入Spider的Responses;和从Spider出去的Requests)

三、Scrapy的运作流程

代码写好,程序开始运行...

1 引擎:Hi!Spider, 你要处理哪一个网站?

2 Spider:老大要我处理xxxx.com。

3 引擎:你把第一个需要处理的URL给我吧。

4 Spider:给你,第一个URL是xxxxxxx.com。

5 引擎:Hi!调度器,我这有request请求你帮我排序入队一下。

6 调度器:好的,正在处理你等一下。

7 引擎:Hi!调度器,把你处理好的request请求给我。

8 调度器:给你,这是我处理好的request

9 引擎:Hi!下载器,你按照老大的下载中间件的设置帮我下载一下这个request请求

10 下载器:好的!给你,这是下载好的东西。(如果失败:sorry,这个request下载失败了。然后引擎告诉调度器,这个request下载失败了,你记录一下,我们待会儿再下载)

11 引擎:Hi!Spider,这是下载好的东西,并且已经按照老大的下载中间件处理过了,你自己处理一下(注意!这儿responses默认是交给def parse()这个函数处理的)

12 Spider:(处理完毕数据之后对于需要跟进的URL),Hi!引擎,我这里有两个结果,这个是我需要跟进的URL,还有这个是我获取到的Item数据。

13 引擎:Hi !管道 我这儿有个item你帮我处理一下!调度器!这是需要跟进URL你帮我处理下。然后从第四步开始循环,直到获取完老大需要全部信息。

14 管道``调度器:好的,现在就做!

注意!只有当调度器中不存在任何request了,整个程序才会停止,(也就是说,对于下载失败的URL,Scrapy也会重新下载。)

四、制作 Scrapy 爬虫 一共需要5步:

#新建项目 :新建一个新的爬虫项目
scrapy startproject proName #创建爬虫文件
scrapy genspider spiName "www.xxx.com" #明确目标 (编写items.py):明确你想要抓取的目标 #编写爬虫文件:制作爬虫开始爬取网页 #存储内容 (pipelines.py):设计管道存储爬取内容

五、Scrapy的安装

Windows 安装方式

a. pip3 install wheel
b. pip3 install Twisted-17.0.1-cp35-cp35m-win_amd64.whl
c. pip3 install pywin32
d. pip3 install scrapy

六、入门案例

(一)在开始爬取之前,必须创建一个新的Scrapy项目。进入自定义的项目目录中,运行下列命令:

scrapy startproject mySpider

其中, mySpider 为项目名称,可以看到将会创建一个 mySpider 文件夹,目录结构大致如下:

下面来简单介绍一下各个主要文件的作用:

mySpider/
scrapy.cfg
mySpider/
__init__.py
items.py
pipelines.py
settings.py
spiders/
__init__.py
...

这些文件分别是:

  • scrapy.cfg: 项目的配置文件。
  • mySpider/: 项目的Python模块,将会从这里引用代码。
  • mySpider/items.py: 项目的目标文件。
  • mySpider/pipelines.py: 项目的管道文件。
  • mySpider/settings.py: 项目的设置文件。
  • mySpider/spiders/: 存储爬虫代码目录。

(二)明确目标

我们打算抓取 http://www.itcast.cn/channel/teacher.shtml 网站里的所有讲师的姓名、职称和个人信息。

    1. 打开 mySpider 目录下的 items.py。

    2. Item 定义结构化数据字段,用来保存爬取到的数据,有点像 Python 中的 dict,但是提供了一些额外的保护减少错误。

    3. 可以通过创建一个 scrapy.Item 类, 并且定义类型为 scrapy.Field 的类属性来定义一个 Item(可以理解成类似于 ORM 的映射关系)。

接下来,创建一个 ItcastItem 类,和构建 item 模型(model)。

import scrapy

class ItcastItem(scrapy.Item):
name = scrapy.Field()
title = scrapy.Field()
info = scrapy.Field()

(三)制作爬虫文件

1. 爬数据

在当前目录下输入命令,将在mySpider/spider目录下创建一个名为itcast的爬虫,并指定爬取域的范围:

scrapy genspider itcast "itcast.cn"

打开 mySpider/spider目录里的 itcast.py,默认增加了下列代码:

import scrapy

class ItcastSpider(scrapy.Spider):
name = "itcast"
allowed_domains = ["itcast.cn"]
start_urls = (
'http://www.itcast.cn/',
) def parse(self, response):
pass

其实也可以由我们自行创建itcast.py并编写上面的代码,只不过使用命令可以免去编写固定代码的麻烦

要建立一个Spider, 你必须用scrapy.Spider类创建一个子类,并确定了三个强制的属性 和 一个方法。

name = "" :这个爬虫的识别名称,必须是唯一的,在不同的爬虫必须定义不同的名字。

allow_domains = [ ] 是搜索的域名范围,也就是爬虫的约束区域,规定爬虫只爬取这个域名下的网页,不存在的URL会被忽略。

start_urls = () :爬取的URL元祖/列表。爬虫从这里开始抓取数据,所以,第一次下载的数据将会从这些urls开始。其他子URL将会从这些起始URL中继承性生成。

parse(self, response) :解析的方法,每个初始URL完成下载后将被调用,调用的时候传入从每一个URL传回的Response对象来作为唯一参数,主要作用如下:

负责解析返回的网页数据(response.body),提取结构化数据(生成item)
生成需要下一页的URL请求。
将start_urls的值修改为需要爬取的第一个url

start_urls = ("http://www.itcast.cn/channel/teacher.shtml",)

2、取数据,修改parse()方法

from mySpider.items import ItcastItem

def parse(self, response):
#open("teacher.html","wb").write(response.body).close() # 存放老师信息的集合
items = [] for each in response.xpath("//div[@class='li_txt']"):
# 将我们得到的数据封装到一个 `ItcastItem` 对象
item = ItcastItem()
#extract()方法返回的都是unicode字符串
name = each.xpath("h3/text()").extract()
title = each.xpath("h4/text()").extract()
info = each.xpath("p/text()").extract() #xpath返回的是包含一个元素的列表
item['name'] = name[0]
item['title'] = title[0]
item['info'] = info[0] items.append(item) # 直接返回最后数据
return items

我们暂时先不处理管道,此时保存数据可以在终端输入命令,指定-o参数

scrapy保存信息的最简单的方法主要有四种,-o 输出指定格式的文件,命令如下:

scrapy crawl itcast -o teachers.json      #json格式,默认为Unicode编码

scrapy crawl itcast -o teachers.jsonlines    #json lines格式,默认为Unicode编码

scrapy crawl itcast -o teachers.csv    #csv 逗号表达式,可用Excel打开

scrapy crawl itcast -o teachers.xml   #xml格式

如果将return改成yield,如下所示,yield会将item数据通过引擎提交给管道进行数据的存储

from mySpider.items import ItcastItem

def parse(self, response):
#open("teacher.html","wb").write(response.body).close() # 存放老师信息的集合
#items = [] for each in response.xpath("//div[@class='li_txt']"):
# 将我们得到的数据封装到一个 `ItcastItem` 对象
item = ItcastItem()
#extract()方法返回的都是unicode字符串
name = each.xpath("h3/text()").extract()
title = each.xpath("h4/text()").extract()
info = each.xpath("p/text()").extract() #xpath返回的是包含一个元素的列表
item['name'] = name[0]
item['title'] = title[0]
item['info'] = info[0] #items.append(item) #将获取的数据交给pipelines
yield item

此时pipelines.py文件编写如下:

import pymysql
import redis
class MyspiderPipeline(object):
fp = None
def open_spider(self,spider): #此方法只执行一次,在爬虫文件开始被执行时触发此方法
print("开始爬虫...")
self.fp = open('./info.txt','w',encoding='utf-8')
def process_item(self, item, spider):
print("打印item",item)
self.fp.write(item["name"]+':'+item["title"]+':'+item["info"]+'\n')
return item #return的作用是将item交由下一个管道进行相应方式的存储
def close_spider(self,spider): #此方法只执行一次,在爬虫文件执行结束时触发此方法
print('结束爬虫...')
self.fp.close() #将爬虫数据存储在mtsql数据库中
class MysqlPipeline(object):
conn = None
cursor = None
def open_spider(self,spider):
self.conn = pymysql.Connect(host="127.0.0.1",port=3306,user="root",password="",db="scrapy",charset="utf8")
def process_item(self,item,spider):
self.cursor = self.conn.cursor()
try:
sql = "insert into teachers(name,title,info) values (%s,%s,%s)"
self.cursor.execute(sql,[item["name"],item["title"],item["info"]])
self.conn.commit()
return item
except Exception as e:
self.conn.rollback()
def close_spider(self,spider):
self.conn.close()
self.cursor.close() # 将爬虫文件缓存在redis数据库中
class RedisPipeline(object):
conn = None
def open_spider(self, spider):
pool = redis.ConnectionPool(host='127.0.0.1',port=6379,db=5)
self.conn = redis.Redis(connection_pool=pool)
def process_item(self,item,spider):
self.conn.lpush('teachersInfo',item)
return item

pipelines.py

利用管道进行存储时,注意不要忘了对settings.py文件进行相应的配置

ITEM_PIPELINES = {
'mySpider.pipelines.MyspiderPipeline': 300, #数字越小,优先级越高
'mySpider.pipelines.MysqlPipeline': 301,
'mySpider.pipelines.RedisPipeline': 302,
}

settings.py

Scrapy 框架入门简介的更多相关文章

  1. 爬虫入门(四)——Scrapy框架入门:使用Scrapy框架爬取全书网小说数据

    为了入门scrapy框架,昨天写了一个爬取静态小说网站的小程序 下面我们尝试爬取全书网中网游动漫类小说的书籍信息. 一.准备阶段 明确一下爬虫页面分析的思路: 对于书籍列表页:我们需要知道打开单本书籍 ...

  2. Python爬虫Scrapy框架入门(2)

    本文是跟着大神博客,尝试从网站上爬一堆东西,一堆你懂得的东西 附上原创链接: http://www.cnblogs.com/qiyeboy/p/5428240.html 基本思路是,查看网页元素,填写 ...

  3. Python爬虫Scrapy框架入门(1)

    也许是很少接触python的原因,我觉得是Scrapy框架和以往Java框架很不一样:它真的是个框架. 从表层来看,与Java框架引入jar包.配置xml或.property文件不同,Scrapy的模 ...

  4. Python爬虫Scrapy框架入门(0)

    想学习爬虫,又想了解python语言,有个python高手推荐我看看scrapy. scrapy是一个python爬虫框架,据说很灵活,网上介绍该框架的信息很多,此处不再赘述.专心记录我自己遇到的问题 ...

  5. Scrapy 框架 入门教程

    Scrapy入门教程 在本篇教程中,我已经安装好Scrapy 本篇教程中将带您完成下列任务: 创建一个Scrapy项目 定义提取的Item 编写爬取网站的 spider 并提取 Item 编写 Ite ...

  6. scrapy框架入门

    scrapy迄今为止依然是世界上最好用,最稳定的爬虫框架,相比于其他直接由函数定义的程序, scrapy使用了面向对象并对网页请求的过程分成了很多个模块和阶段,实现跨模块和包的使用,大大提升了代码的稳 ...

  7. Python爬虫Scrapy框架入门(3)

    往往需要爬取的网页是呈一个树状结构.比如,需要先爬取一个目录,然后再在目录中选择具体的爬取目标.而目录和具体目标之间,网页结构不同,使得我们不能使用相同的爬取策略. 从之前的经验来看,我们对scrap ...

  8. scrapy 框架入门

    运行流程 官网:https://docs.scrapy.org/en/latest/intro/overview.html 流程图如下: 组件 1.引擎(EGINE):负责控制系统所有组件之间的数据流 ...

  9. 【python】Scrapy爬虫框架入门

    说明: 本文主要学习Scrapy框架入门,介绍如何使用Scrapy框架爬取页面信息. 项目案例:爬取腾讯招聘页面 https://hr.tencent.com/position.php?&st ...

随机推荐

  1. shell判断文件目录或文件是否存在

    1.文件描述符 -e 判断对象是否存在 -d 判断对象是否存在,并且为目录 -f 判断对象是否存在,并且为常规文件 -L 判断对象是否存在,并且为符号链接 -h 判断对象是否存在,并且为软链接 -s ...

  2. Linux 文件复制命令cp

    文件复制命令cp 命令格式:cp [-adfilprsu] 源文件(source) 目标文件(destination) cp [option] source1 source2 source3 ... ...

  3. P5369 [PKUSC2018]最大前缀和

    状态压缩 P5369 题意:求所有排列下的最大前缀和之和 一步转化: 求最大前缀和的前缀由数集S组成的方案数, 统计答案时直接乘上sum(S)即可 考虑最大前缀和的性质: 设最大前缀和为sum[i] ...

  4. 在Linux环境下采用压缩包方式安装JDK 13

    本文地址:https://www.cnblogs.com/oberon-zjt0806/p/11663731.html 可以,转载,出处,格式,懂?? 什么是JDK?? 好吧如果你不知道这个问题的话我 ...

  5. canvas实现平面迁徙图

    前言 最近在做自己维护的一个可视化工具的时候,在添加基于echart的雷达图的时候,按照echart官网案例写完发现在自己项目中无法正常运行,排查了一番发现是我项目中echart的版本太低.找到问题原 ...

  6. 超详细!! sql server 同步数据库 发布 订阅 跨网段 无公网ip 常见问题

    问题描述 主机1:发布端 阿里云服务器--有公网ip 主机2:订阅端 笔记本--无公网ip 数据量很小,主要是熟悉发布订阅的操作流程. 主机2仅仅作为主机1的本地备份,要求修改云服务器上数据后,能通过 ...

  7. Typesetting HDU - 6107

    Yellowstar is writing an article that contains N words and 1 picture, and the i-th word contains aia ...

  8. jQuery.noConflict()解决imgBox.js依赖jquery版本问题

    jQuery提供两种点击图片放大效果出处 在使用imgbox.js是出现的jquery版本不兼容问题,之后了解到jQuery.noConflict()的用法 jQuery.noConflict()的存 ...

  9. MyEclipse注册代码

    package test;    import java.io.BufferedReader;  import java.io.IOException;  import java.io.InputSt ...

  10. 数据结构(java)

    数据结构1.什么是数据结构?数据结构有哪些? 数据结构是指数据在内存中存放的机制. 不同的数据结构在数据的查询,增删该的情况下性能是不一样的. 数据结构是可以模拟业务场景. 常见的数据结构有:栈,队列 ...