AlexNet:

VGGNet:

用3x3的小的卷积核代替大的卷积核,让网络只关注相邻的像素

3x3的感受野与7x7的感受野相同,但是需要更深的网络

这样使得参数更少

大多数内存占用在靠前的卷积层,大部分的参数在后面的全连接层

GoogleNet:

Inception模块:设计了一个局部网络拓扑结构,然后堆放大量的局部拓扑在每一个的顶部

目的是将卷积和池化(filter)操作并行,最后在顶层将得到的输出串联得到一个张量进入下一层

这种做法会增加庞大的计算量:

(图中输入输出尺寸不变是因为增加了零填充)

为了降低计算量,会在inception之前增加一个瓶颈层通过1x1的卷积核进行降维操作

相比没有1x1卷积核的降维,计算量从8.54亿次减小到3.58亿次

网络结构尾部完全移除全连接层,大量减少参数;有两个额外的辅助分类层

ResNet:

单纯不停的堆叠卷积层池化层plain convolutional neural network不使用残差结构)来加深网络的深度并不能表现得更好(不是因为过拟合,在训练集上表现得也不如20层的网络)

这是一个优化问题,深层的网络更加难以优化

深层的网络至少会跟浅层的网络表现的一样好,解决方案是将从浅层模型学到的层通过恒等映射copy到较深的层。

若将输入设为X,将某一有参网络层设为H,那么以X为输入的此层的输出将为H(X)。一般的CNN网络如Alexnet/VGG等会直接通过训练学习出参数函数H的表达,从而直接学习X -> H(X)。

而残差学习则是致力于使用多个有参网络层来学习输入、输出之间的参差即H(X) - X即学习X -> (H(X) - X) + X。其中X这一部分为直接的identity mapping,而H(X) - X则为有参网络层要学习的输入输出间残差。

残差学习单元通过Identity mapping的引入在输入、输出之间建立了一条直接的关联通道,从而使得强大的有参层集中精力学习输入、输出之间的残差。一般我们用F(X, Wi)来表示残差映射,那么输出即为:Y = F(X, Wi) + X。

resnet也用到了GoogleNet中的瓶颈层操作

改进的残差:

其他的网络:

1

AlexNet,VGG,GoogleNet,ResNet的更多相关文章

  1. CNN Architectures(AlexNet,VGG,GoogleNet,ResNet,DenseNet)

    AlexNet (2012) The network had a very similar architecture as LeNet by Yann LeCun et al but was deep ...

  2. LeNet, AlexNet, VGGNet, GoogleNet, ResNet的网络结构

    1. LeNet 2. AlexNet 3. 参考文献: 1.  经典卷积神经网络结构——LeNet-5.AlexNet.VGG-16 2. 初探Alexnet网络结构 3.

  3. #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...

  4. (转)ResNet, AlexNet, VGG, Inception: Understanding various architectures of Convolutional Networks

    ResNet, AlexNet, VGG, Inception: Understanding various architectures of Convolutional Networks by KO ...

  5. Deep Learning 经典网路回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet

    #Deep Learning回顾#之LeNet.AlexNet.GoogLeNet.VGG.ResNet 深入浅出——网络模型中Inception的作用与结构全解析 图像识别中的深度残差学习(Deep ...

  6. 经典深度学习CNN总结 - LeNet、AlexNet、GoogLeNet、VGG、ResNet

    参考了: https://www.cnblogs.com/52machinelearning/p/5821591.html https://blog.csdn.net/qq_24695385/arti ...

  7. Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet - 我爱机器学习

    http://www.cnblogs.com/52machinelearning/p/5821591.html

  8. 深度学习方法(五):卷积神经网络CNN经典模型整理Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 关于卷积神经网络CNN,网络和文献中 ...

  9. L17 AlexNet VGG NiN GoogLeNet

    深度卷积神经网络(AlexNet) LeNet: 在大的真实数据集上的表现并不尽如⼈意. 1.神经网络计算复杂. 2.还没有⼤量深⼊研究参数初始化和⾮凸优化算法等诸多领域. 机器学习的特征提取:手工定 ...

随机推荐

  1. 2019-8-31-C#-将-Begin-和-End-异步方法转-task-异步

    title author date CreateTime categories C# 将 Begin 和 End 异步方法转 task 异步 lindexi 2019-08-31 16:55:58 + ...

  2. vbox环境搭建oracle11g RAC过程

    安装环境 主机操作系统:windows 10 虚拟机Vbox:两台Oracle Linux R6 U7 x86_64 Oracle Database software: Oracle11gR2 Clu ...

  3. Oracle dbms_random包的用法

    1.dbms_random.value方法 dbms_random是一个可以生成随机数值或者字符串的程序包.这个包有initialize().seed().terminate().value().no ...

  4. oracle函数 extract(c1 from d1)

    [功能]:日期/时间d1中,参数(c1)的值 [参数]:d1日期型(date)/日期时间型(timestamp),c1为字符型(参数) [参数表]:c1对应的参数表详见示例 [返回]:字符 [示例] ...

  5. day3_python之函数基础知识

    一 .为何要用函数之不用函数的问题 #1.代码的组织结构不清晰,可读性差 #2.遇到重复的功能只能重复编写实现代码,代码冗余 #3.功能需要扩展时,需要找出所有实现该功能的地方修改之,无法统一管理且维 ...

  6. ORACLE内部操作

    当执行查询时,ORACLE采用了内部的操作. 下表显示了几种重要的内部操作. ORACLE Clause 内部操作 ORDER BY SORT ORDER BY UNION UNION-ALL MIN ...

  7. IDEA中安装activiti并使用

    1.IDEA中本身不带activiti,需要自己安装下载. 打开IDEA中File列表下的Settings 输入actiBPM,然后点击下面的Search...搜索 点击Install 下载 下载结束 ...

  8. java DOM 操作xml

    1 代码如下: package dom.pasing; import java.io.IOException; import java.io.StringWriter; import javax.xm ...

  9. H3C Basic NAT

  10. JDBC 时间处理

    Java中用类java.util.Date对日期/时间做了封装,此类提供了对年.月.日.时.分.秒.毫秒以及时区的控制方法,同时也提供一些工具方法,比如日期/时间的比较,前后判断等. java.uti ...