Query查询器 与 Filter 过滤器

尽管我们之前已经涉及了查询DSL,然而实际上存在两种DSL:查询DSL(query DSL)和过滤DSL(filter DSL)。
过滤器(filter)通常用于过滤文档的范围,比如某个字段是否属于某个类型,或者是属于哪个时间区间
* 创建日期是否在2014-2015年间?
* status字段是否为success?

* lat_lon字段是否在某个坐标的10公里范围内?

查询器(query)的使用方法像极了filter,但query更倾向于更准确的查找。

* 与full text search的匹配度最高

* 正则匹配

* 包含run单词,如果包含这些单词:runs、running、jog、sprint,也被视为包含run单词
* 包含quick、brown、fox。这些词越接近,这份文档的相关性就越高
查询器会计算出每份文档对于某次查询有多相关(relevant),然后分配文档一个相关性分数:_score。而这个分数会被用来对匹配了的文档进行相关性排序。相关性概念十分适合全文搜索(full-text search),这个很难能给出完整、“正确”答案的领域。

query filter在性能上对比:filter是不计算相关性的,同时可以cache。因此,filter速度要快于query。

下面是使用query语句查询的结果,第一次查询用了300ms,第二次用了280ms.

 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
 
#blog:  http://xiaorui.cc
{
    "size": 1,
    "query": {
        "bool": {
            "must": [
                {
                    "terms": {
                        "keyword": [
                            "手机",
                            "iphone"
                        ]
                    }
                },
                {
                    "range": {
                        "cdate": {
                            "gt": "2015-11-09T11:00:00"
                        }
                    }
                }
            ]
        }
    }
}
 
{
    "took": 51,
    "timed_out": false,
    "_shards": {
        "total": 30,
        "successful": 30,
        "failed": 0
    },
    "hits": {
        "total": 6818,
        "max_score": 0,
        "hits": []
    }
}

下面是使用filter查询出来的结果,第一次查询时间是280ms,第二次130ms…. 速度确实快了不少,也证明filter走了cache缓存。 但是如果我们对比下命中的数目,query要比filter要多一点,换句话说,更加的精准。

 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
 
#blog: xiaorui.cc
{
    "size": 0,
    "filter": {
        "bool": {
            "must": [
                {
                    "terms": {
                        "keyword": [
                            "手机",
                            "iphone"
                        ]
                    }
                },
                {
                    "range": {
                        "cdate": {
                            "gt": "2015-11-09T11:00:00"
                        }
                    }
                }
            ]
        }
    }
}
 
 
{
    "took": 145,
    "timed_out": false,
    "_shards": {
        "total": 30,
        "successful": 30,
        "failed": 0
    },
    "hits": {
        "total": 6804,
        "max_score": 0,
        "hits": []
    }
}<span style="font-size:13.2px;line-height:1.5;"></span>

如果你想同时使用query和filter查询的话,需要使用 {query:{filtered:{}}} 来包含这两个查询语法。他们的好处是,借助于filter的速度可以快速过滤出文档,然后再由query根据条件来匹配。

 
 
 
 
 

Python

 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
 
    "query": {
        "filtered": {
            "query":  { "match": { "email": "business opportunity" }},
            "filter": { "term": { "folder": "inbox" }}
        }
    }
}
 
{   "size":0,    
    "query": {
        "filtered": {
            "query": {
                "bool": {
                    "should": [],
                    "must_not": [
                      
                    ],
                    "must": [
                        {
                         "term": {
                            
                                "channel_name":"微信自媒体微信"
                            }
                        }
                  
                    ]
                }
            }
 
        },
        "filter":{
            "range": {
                "idate": {
                    "gte": "2015-09-01T00:00:00",
                    "lte": "2015-09-10T00:00:00"
                    
                    }
                }
        }
    }
}

我们这业务上关于elasticsearch的查询语法基本都是用query filtered方式进行的,我也推荐大家直接用这样的方法。should ,must_not, must 都是列表,列表里面可以写多个条件。 这里再啰嗦一句,如果你的查询是范围和类型比较粗大的,用filter ! 如果是那种精准的,就用query来查询。

{

”bool”:{

”should”:[],   #相当于OR条件

”must_not”:[],  #必须匹配的条件,这里的条件都会被反义

”must”:[]        #必须要有的

}

}

END..

elasticsearch query 和 filter 的区别的更多相关文章

  1. Elasticsearch query和filter的区别

    1.关于Query context和filter context 查询语句的表现行为取决于使用了查询上下文方式还是过滤上下文方式. Query context:查询上下文,回答了“文档是如何被查询语句 ...

  2. ElasticSearch - query vs filter

    query vs filter 来自stackoverflow Stackoverflow - queries-vs-filters Question 题主希望知道Query和Filter的区别 An ...

  3. 以bank account 数据为例,认识elasticsearch query 和 filter

    Elasticsearch 查询语言(Query DSL)认识(一) 一.基本认识 查询子句的行为取决于 query context filter context 也就是执行的是查询(query)还是 ...

  4. elasticsearch中query和filter的区别

    参考博客来自: https://mp.weixin.qq.com/s/tiiveCW3W-oDIgxvlwsmXA?utm_medium=hao.caibaojian.com&utm_sour ...

  5. Elasticsearch 之 query与filter区别

    转载: http://xiaorui.cc/category/elasticsearch/ http://blog.csdn.net/asia_kobe/article/details/5056301 ...

  6. 【转】elasticsearch的查询器query与过滤器filter的区别

    很多刚学elasticsearch的人对于查询方面很是苦恼,说实话es的查询语法真心不简单-  当然你如果入门之后,会发现elasticsearch的rest api设计是多么有意思. 说正题,ela ...

  7. Elasticsearch系列(二)--query、filter、aggregations

    本文基于ES6.4版本,我也是出于学习阶段,对学习内容做个记录,如果文中有错误,请指出. 实验数据: index:book type:novel mappings: { "mappings& ...

  8. Elasticsearch DSL中Query与Filter的不同

    Elasticsearch支持很多查询方式,其中一种就是DSL,它是把请求写在JSON里面,然后进行相关的查询. 举个DSL例子 GET _search { "query": { ...

  9. Query DSL for elasticsearch Query

    Query DSL Query DSL (资料来自: http://www.elasticsearch.cn/guide/reference/query-dsl/) http://elasticsea ...

随机推荐

  1. C# interface (接口基础知识详解)

    Interface(接口) (本文转载地址:http://blog.sina.com.cn/s/blog_574c993d0100d59n.html) 介绍:C#中的接口提供了一种实现运行时的多态.通 ...

  2. 阿里云Aliplayer高级功能介绍(一):视频截图

    基本介绍 H5 Video是不提供截图的API的, 视频截图需要借助Canvas,通过Canvas提供的drawImage方法,把Video的当前画面渲染到画布上, 最终通过toDataURL方法可以 ...

  3. rancher2.0 自定义应用商店(catalog)

    1.进入自定义应用商店页面 ===================================================== ================================ ...

  4. echarts renderItem-在区间段内展示连续数据

    一.需求背景: 贴图说明:要求数据在不同类型的区间段内展示. 二.实现思路及代码 实现方法: 利用echarts的自定义配置:option.series[i].type='custom'中的rende ...

  5. ON_EVENT 报错

    错误提示: error C2440: 'initializing' : cannot convert from 'const wchar_t [1]' to 'UINT' error C2440: ' ...

  6. SPSS分析:Bootstrap

    SPSS分析:Bootstrap 一.原理: 非参数统计中一种重要的估计统计量方差进而进行区间估计的统计方法,也称为自助法.其核心思想和基本步骤如下: 1.采用重抽样技术从原始样本中抽取一定数量(自己 ...

  7. SpringCloud学习笔记(九):SpringCloud Config 分布式配置中心

    概述 分布式系统面临的-配置问题 微服务意味着要将单体应用中的业务拆分成一个个子服务,每个服务的粒度相对较小,因此系统中会出现大量的服务.由于每个服务都需要必要的配置信息才能运行,所以一套集中式的.动 ...

  8. 豌豆荚Redis集群方案:Codis

    Codis简介 Codis是一个分布式Redis解决方案,对于上层的应用来说,连接到CodisProxy和连接原生的RedisServer没有明显的区别(不支持的命令列表),上层应用可以像使用单机的R ...

  9. awk 一些题目

    1.1. 输出记录最多的IP [腾讯面试题]:一个文本类型的文件,里面每行存放一个登陆者的IP(某些行是重复的),写一个shell脚本输出登陆次数最多的用户. Ip_input.txt的内容假设如下: ...

  10. Django的日常-AJAX

    目录 Django的日常-AJAX AJAX简介 AJAX与JQ的一个实例 AJAX与contentType AJAX传json格式 AJAX传文件 Django的日常-AJAX AJAX简介 首先A ...