大盘及策略收益率的公式推导与Python代码
一、模型前提与假设
设策略总天数为\(n\)、第\(t\)日大盘的收盘价为\(P_t\)、第\(t\)日的单日收益率为\(r_t\)、\(n\)天的累积收益率为\(r_{cum}\)
假设策略仅买卖大盘指数,第\(t\)日的头寸是根据第\((t-1)\)日收盘价计算出的\(s_{t-1}\),因此第1天的收益率\(r_{1}=0\)
特别注意:为避免未来函数,不能使用\(s_{t}\)计算第\(t\)日的头寸。
二、大盘单日收益率
1. 离散型
\]
对应的Python代码为:
df['market_dis'] = df['close']/df['close'].shift()-1
或
df['market_dis'] = df['close'].pct_change()
2. 连续型
\]
对应的Python代码为:
df['market_con'] = np.log(df['close'] / df['close'].shift())
三、大盘累积收益率
1. 离散型
1+r_{cum}&=(1+r_{1})(1+r_{2})\cdots(1+r_{n})\\[1.5ex]
&=\frac{P_{1}}{P_{0}}\cdot \frac{P_{2}}{P_{1}}\cdots\frac{P_{n}}{P_{n-1}}\\[1.5ex]
&=\frac{P_{n}}{P_{0}}
\end{align}
\]
对应的Python代码为:
# 注意:这里的累积收益率是以净值形式体现的,在实际应用中可能需要在此结果基础上-1
df['market_dis_cum'] = (1+df['market_dis']).cumprod()
2. 连续型
\text{exp}(r_{cum})& = \text{exp}(r_{1}+r_{2}+\cdots+r_{n}) \\[1.5ex]
& = \text{exp}\left({ln\frac{P_{1}}{P_{0}}+ln\frac{P_{2}}{P_{1}}+\cdots+ln\frac{P_{n}}{P_{n-1}}}\right)\\[1.5ex]
& =\frac{P_{1}}{P_{0}}\cdot\frac{P_{2}}{P_{1}}\cdots\frac{P_{n}}{P_{n-1}}\\[1.5ex]
& =\frac{P_{n}}{P_{0}}\\[2ex]
\end{align}
\]
对应的Python代码为:
# 注意:这里的累积收益率是以净值形式体现的,在实际应用中可能需要在此结果基础上取np.log()
df['market_con_cum'] = df['market_con'].cumsum().apply(np.exp)
四、策略单日收益率
1. 离散型
\begin{cases}
0&,t=1\\[2ex]
s_{t-1}\left(\cfrac{P_t}{P_{t-1}}-1\right)&,t=2,3,\cdots,n\\[2ex]
\end{cases}
\]
对应的Python代码为:
df['strategy_dis'] = df['position'].shift()*df['market_dis']
2. 连续型
\begin{cases}
0&,t=1\\[2ex]
s_{t-1}ln\cfrac{P_t}{P_{t-1}}&,t=2,3,\cdots,n\\[2ex]
\end{cases}
\]
对应的Python代码为:
df['strategy_con'] = df['position'].shift()*df['market_con']
五、策略累积收益率
1. 离散型
1+r_{cum}&=(1+r_{2})(1+r_{3})\cdots(1+r_{n})\\[1.5ex]
&=\left[1+s_{1}\left(\frac{P_{2}}{P_{1}}-1\right)\right]\left[1+s_{2}\left(\frac{P_{3}}{P_{2}}-1\right)\right]\cdots\left[1+s_{n-1}\left(\frac{P_{n}}{P_{n-1}}-1\right)\right]\\[1.5ex]
\end{align}\\
\]
对应的Python代码为:
# 注意:这里的累积收益率是以净值形式体现的,在实际应用中可能需要在此结果基础上-1
df['strategy_dis_cum'] = (1+df['strategy_dis']).cumprod()
2. 连续型
\text{exp}(r_{cum})& = \text{exp}(r_{2}+r_{3}\cdots+r_{n}) \\[1.5ex]
& = \text{exp}\left({s_1ln\frac{P_{2}}{P_{1}}+s_2ln\frac{P_{3}}{P_{2}}+\cdots+s_{n-1}ln\frac{P_{n}}{P_{n-1}}}\right)\\[1.5ex]
& =\left(\frac{P_{2}}{P_{1}}\right)^{s_1}\left(\frac{P_{3}}{P_{2}}\right)^{s_2}\cdots\left(\frac{P_{n}}{P_{n-1}}\right)^{s_{n-1}}\\[1.5ex]
\end{align}
\]
对应的Python代码为:
# 注意:这里的累积收益率是以净值形式体现的,在实际应用中可能需要在此结果基础上取np.log()
df['strategy_con_cum'] = df['strategy_con'].cumsum().apply(np.exp)
大盘及策略收益率的公式推导与Python代码的更多相关文章
- 最小二乘法公式推导及Python实现
机器学习使用线性回归方法建模时,求损失函数最优解需要用到最小二乘法.相信很多朋友跟我一样,想先知道公式是什么,然后再研究它是怎么来的.所以不多说,先上公式. 对于线性回归方程\(f(x) = ax + ...
- 一个 11 行 Python 代码实现的神经网络
一个 11 行 Python 代码实现的神经网络 2015/12/02 · 实践项目 · 15 评论· 神经网络 分享到:18 本文由 伯乐在线 - 耶鲁怕冷 翻译,Namco 校稿.未经许可,禁止转 ...
- XGBoost参数调优完全指南(附Python代码)
XGBoost参数调优完全指南(附Python代码):http://www.2cto.com/kf/201607/528771.html https://www.zhihu.com/question/ ...
- 学习TensorFlow,浅析MNIST的python代码
在github上,tensorflow的star是22798,caffe是10006,torch是4500,theano是3661.作为小码农的我,最近一直在学习tensorflow,主要使用pyth ...
- PEP 8 - Python代码样式指南
PEP 8 - Python代码样式指南 PEP: 8 标题: Python代码风格指南 作者: Guido van Rossum <python.org上的guido>,Barry Wa ...
- catboost原理以及Python代码
原论文: http://learningsys.org/nips17/assets/papers/paper_11.pdf catboost原理: One-hot编码可以在预处理阶段或在训练期间 ...
- 一种部署 Python 代码的新方法
在Nylas,我们喜欢使用Python进行开发.它的语法简单并富有表现力,拥有大量可用的开源模块和框架,而且这个社区既受欢迎又有多样性.我们的后台是纯用 Python 写的,团队也经常在 PyCon ...
- Python代码编码规范
目录 1. Introduction 介绍 2. A Foolish Consistency is the Hobgoblin of Little Minds 尽信书,则不如无书 3. Code la ...
- 改改Python代码,运行速度还能提升6万倍
这份最新研究指出,在后摩尔定律时代,人类所获得的的算力提升将更大程度上来源于计算堆栈的「顶层」,即软件.算法和硬件架构,这将成为一个新的历史趋势. 很多人学习python,不知道从何学起.很多人学习p ...
随机推荐
- zookeeper linux分布式部署
安装包下载地址:http://mirror.bit.edu.cn/apache/zookeeper,记住要下载那个bin的不要下tar.gz包不然即使你安装了也会报错误: 找不到或无法加载主类org. ...
- 全网最全!小白搭建hexo+Github/Gitee/Coding
Hexo是一个快速.简洁且高效的博客框架.Hexo使用Markdown解析文章,在几秒内,即可利用靓丽的主题生成静态网页. 本站内容已全部转移到https://www.myyuns.ltd,具体请移步 ...
- C语言随笔4:指针数组、数组指针
数组: 1:数组名为地址,表达方法: Int A[10]; A;//数组名表示首地址 &A;//数组名加取地址符,仍然表示首地址 &A[0];//第0个元素的地址,即首地址 数组名是指 ...
- 关于Spring+mybatis使用@Transactional注解事物没有生效的问题
控制台日志信息: was not registered for synchronization because synchronization is not active JDBC Connectio ...
- 2.1 【配置环境】 JDK + eclipse + selenium
1.jdk以及eclipse的具体安装详见 http://www.cnblogs.com/ericazy/p/6082194.html 安装1.7 jdk即可 2.selenium 旧版本安装: s ...
- HBO《硅谷》中的二进制码
先反思一下……这两天感觉除了coding,没有很好地去学习专业课.心神不定 于是,就想看下硅谷,来提升一下自己的coding执行力…… 然后,我就在看剧的时候,看到了这么一张图:‘ 然后嘛…… 我就想 ...
- JavaScript 推箱子游戏
推箱子游戏的 逻辑非常简单,但是如果不动手的话,还是不太清楚.我在这里讲一下自己的思路. 制作推箱子,首先要有自己的设计素材.如下我也是网上找的素材 第二步,理清游戏的规则. 游戏规则: 1.小人将箱 ...
- 为什么安装了淘宝镜像,永用cnpm安装依赖包会报错,而用npm就不会?报错:cnpm : 无法加载文件 C:\Users\93457\AppData\Roaming\npm\cnpm.ps1。。。。
cnpm - 解决 " cnpm : 无法加载文件 C:\Users\93457\AppData\Roaming\npm\cnpm.ps1,因为在此系统上禁止运行脚本.有关详细信息 ... ...
- awk命令_Linux awk 命令用法详解
本文索引 awk命令格式和选项 awk模式和操作 模式 操作 awk脚本基本结构 awk的工作原理 awk内置变量(预定义变量) 将外部变量值传递给awk awk运算与判断 算术运算符 赋值运算符 逻 ...
- Sunday算法浅谈
一.Sunday算法简介 Sunday算法在我看来比起Kmp和bm都更加容易理解,代码实现也更加简洁.Sunday算法由Daniel M.Sunday在1990年提出,它的思想跟BM算法很相似只不过S ...