1058 - Parallelogram Counting 计算几何
There are n distinct points in the plane, given by their integer coordinates. Find the number of parallelograms whose vertices lie on these points. In other words, find the number of 4-element subsets of these points that can be written as {A, B, C, D} such that AB || CD, and BC || AD. No four points are in a straight line.
Input
Input starts with an integer T (≤ 15), denoting the number of test cases.
The first line of each test case contains an integer n (1 ≤ n ≤ 1000). Each of the next n lines, contains 2 space-separated integers x and y (the coordinates of a point) with magnitude (absolute value) of no more than 1000000000.
Output
For each case, print the case number and the number of parallelograms that can be formed.
Sample Input |
Output for Sample Input |
|
2 6 0 0 2 0 4 0 1 1 3 1 5 1 7 -2 -1 8 9 5 7 1 1 4 8 2 0 9 8 |
Case 1: 5 Case 2: 6 |
分析:学了这么多年数学,然而只知道平行四边形对角线交于一点,却没想到只要存在两点的中点与另两点的中点相同,就能构成平行四边形。
代码:
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<queue>
#include<stack>
using namespace std;
#define N 510000
struct node
{
int x;
int y;
}arr[N], mid[N];
bool cmp(struct node a, struct node b)
{
if(a.x != b.x)
return a.x < b.x;
return a.y < b.y;
}
int main(void)
{
int T, cas, n;
scanf("%d", &T);
cas = 0;
while(T--)
{
cas++;
memset(mid, 0, sizeof(mid));
scanf("%d", &n);
for(int i = 0; i < n; i++)
{
scanf("%d%d", &arr[i].x, &arr[i].y);
}
int num = 0;
for(int i = 0; i < n-1; i++)
{
for(int j = i+1; j < n; j++)
{
mid[num].x = arr[i].x + arr[j].x;
mid[num].y = arr[i].y + arr[j].y;
num++;
}
}
sort(mid, mid+num, cmp);/// 排序是为了方便下面比较
int cnt = 1;
int ans = 0;
int flag = 0;
for(int i = 1; i < num; i++)
{
if(mid[i].x == mid[flag].x && mid[i].y == mid[flag].y)
{
cnt++;
}
else
{
ans += cnt * (cnt - 1) / 2;///计算就是组合数:从 n个数里面取出 2个数 ,就是 C(n,2)
cnt = 1;
flag = i;
}
}
if(cnt>1)
ans += (cnt - 1) * cnt / 2; /// 判断循环的最后一组数据,如果也存在相同的点,就加上
printf("Case %d: %d\n", cas, ans);
}
return 0;
}
1058 - Parallelogram Counting 计算几何的更多相关文章
- LightOJ - 1058 - Parallelogram Counting(数学,计算几何)
链接: https://vjudge.net/problem/LightOJ-1058 题意: There are n distinct points in the plane, given by t ...
- Light OJ - 1058 Parallelogram Counting(判定平行四边形)
Description There are n distinct points in the plane, given by their integer coordinates. Find the n ...
- LightOJ 1058 - Parallelogram Counting 几何思维
http://www.lightoj.com/volume_showproblem.php?problem=1058 题意:给你顶点,问能够成多少个平行四边形. 思路:开始想使用长度来扫描有多少根,但 ...
- Parallelogram Counting(平行四边形个数,思维转化)
1058 - Parallelogram Counting PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit ...
- 计算几何 + 统计 --- Parallelogram Counting
Parallelogram Counting Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5749 Accepted: ...
- POJ 1971 Parallelogram Counting (Hash)
Parallelogram Counting Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 6895 Acc ...
- POJ 1971 Parallelogram Counting
题目链接: http://poj.org/problem?id=1971 题意: 二维空间给n个任意三点不共线的坐标,问这些点能够组成多少个不同的平行四边形. 题解: 使用的平行四边形的判断条件:对角 ...
- POJ 1791 Parallelogram Counting(求平行四边形数量)
Description There are n distinct points in the plane, given by their integer coordinates. Find the n ...
- POJ 1971-Parallelogram Counting,暴力1063ms!
Parallelogram Counting 刚学hash还不会用,看到5000ms的时限于是想着暴力来一发应该可以过.以前做过类似的题,求平行四边形个数,好像是在CF上做的,但忘了时限是多少了,方法 ...
随机推荐
- poj 2253 最短路 or 最小生成树
Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sit ...
- head查询
• must子句:文档必须匹配must查询条件:• should子句:文档应该匹配should子句查询的一个或多个:• must_not子句:文档不能匹配该查询条件:• filter子句:过滤器,文档 ...
- WordPress使用PHPMailer发送gmail邮件
wordpress使用phpmailer发送gmail邮件 0.保证用于gmail账号已经开启imap服务,且你能正常访问到gmail的smtp服务.(需要climb over the wall) 1 ...
- python 学习爬虫教程~
思路:: (本文没有用xpath定位,xpath需要导入第三方库 from lxml import etree) 1.首先通过urllib类获取到网页的所有内容 2.通过partition获取其中 ...
- kubernetes concepts -- Pod Lifecycle
Pod Lifecycle This page describes the lifecycle of a Pod. Pod phase A Pod’s status field is a PodSta ...
- newSQL 到底是什么?
数据库发展至今已经有3代了: SQL,传统关系型数据库,例如 MySQL noSQL,例如 MongoDB newSQL SQL 的问题 互联网在本世纪初开始迅速发展,互联网应用的用户规模.数据量都越 ...
- Java入门 - 高级教程 - 09.文档注释
原文地址:http://www.work100.net/training/java-documentation.html 更多教程:光束云 - 免费课程 文档注释 序号 文内章节 视频 1 概述 2 ...
- Docker和Kubernetes
Docker和Kubernetes Docker Docker是一个容器的开放平台,但它不是最早的.自20世纪70年代以来,容器平台一直存在.他们的开发可以追溯到Unix中的chroot系统调用.在2 ...
- chrome浏览器无法开启同步功能 request cancel
解决办法 添加代理规则*.googleapis.com
- .net core 认证与授权(一)
前言 .net core web并不是一个非常新的架构,很多文章提及到认证与授权这个过程,但是一般都会提及到里面的方法怎么用的,而不是模拟一个怎样的过程,所以我打算记录自己的理解. 什么是认证?我们大 ...