【29】带你了解计算机视觉(Computer vision)
计算机视觉(Computer vision)
计算机视觉是一个飞速发展的一个领域,这多亏了深度学习。
深度学习与计算机视觉可以帮助汽车,查明周围的行人和汽车,并帮助汽车避开它们。
还使得人脸识别技术变得更加效率和精准,你们即将能够体验到或早已体验过仅仅通过刷脸就能解锁手机或者门锁。
当你解锁了手机,我猜手机上一定有很多分享图片的应用。在上面,你能看到美食,酒店或美丽风景的图片。有些公司在这些应用上使用了深度学习技术来向你展示最为生动美丽以及与你最为相关的图片。
机器学习甚至还催生了新的艺术类型。深度学习之所以让我兴奋有下面两个原因,我想你们也是这么想的。
第一,计算机视觉的高速发展标志着新型应用产生的可能,这是几年前,人们所不敢想象的。通过学习使用这些工具,你也许能够创造出新的产品和应用。
其次,即使到头来你未能在计算机视觉上有所建树,但我发现,人们对于计算机视觉的研究是如此富有想象力和创造力,由此衍生出新的神经网络结构与算法,这实际上启发人们去创造出计算机视觉与其他领域的交叉成果。
举个例子,之前在做语音识别的时候,我经常从计算机视觉领域中寻找灵感, 并将其应用于我的文献当中。所以即使你在计算机视觉方面没有做出成果,我也希望你也可以将所学的知识应用到其他算法和结构。就介绍到这儿,让我们开始学习吧。

这是我们本节课将要学习的一些问题,你应该早就听说过图片分类,或者说图片识别。比如给出这张64×64的图片,让计算机去分辨出这是一只猫。


但在应用计算机视觉时要面临一个挑战,就是数据的输入可能会非常大。
举个例子,在过去的课程中,你们一般操作的都是64×64的小图片,实际上,它的数据量是64×64×3,因为每张图片都有3个颜色通道。如果计算一下的话,可得知数据量为12288,所以我们的特征向量x维度为12288。这其实还好,因为64×64真的是很小的一张图片。

如果你要操作更大的图片,比如一张1000×1000的图片,它足有1兆那么大,但是特征向量的维度达到了1000×1000×3,因为有3个RGB通道,所以数字将会是300万。如果你在尺寸很小的屏幕上观察,可能察觉不出上面的图片只有64×64那么大,而下面一张是1000×1000的大图。

如果你要输入300万的数据量,这就意味着,特征向量x的维度高达300万。
所以在第一隐藏层中,你也许会有1000个隐藏单元,而所有的权值组成了矩阵 W^([1])。
如果你使用了标准的全连接网络,就像我们在之前的课程里说的,这个矩阵的大小将会是1000×300万。因为现在x的维度为3m,3m通常用来表示300万。这意味着矩阵W^([1])会有30亿个参数,这是个非常巨大的数字。在参数如此大量的情况下,难以获得足够的数据来防止神经网络发生过拟合和竞争需求,要处理包含30亿参数的神经网络,巨大的内存需求让人不太能接受。
但对于计算机视觉应用来说,你肯定不想它只处理小图片,你希望它同时也要能处理大图。为此,你需要进行卷积计算,它是卷积神经网络中非常重要的一块。下个笔记中,我会为你介绍如何进行这种运算,我将用边缘检测的例子来向你说明卷积的含义。
【29】带你了解计算机视觉(Computer vision)的更多相关文章
- 如何创建Azure Face API和计算机视觉Computer Vision API
在人工智能技术飞速发展的当前,利用技术手段实现人脸识别.图片识别已经不是什么难事.目前,百度.微软等云计算厂商均推出了人脸识别和计算机视觉的API,其优势在于不需要搭建本地环境,只需要通过网络交互,就 ...
- paper 156:专家主页汇总-计算机视觉-computer vision
持续更新ing~ all *.files come from the author:http://www.cnblogs.com/findumars/p/5009003.html 1 牛人Homepa ...
- 计算机视觉中的边缘检测Edge Detection in Computer Vision
计算机视觉中的边缘检测 边缘检测是计算机视觉中最重要的概念之一.这是一个很直观的概念,在一个图像上运行图像检测应该只输出边缘,与素描比较相似.我的目标不仅是清晰地解释边缘检测是怎样工作的,同时也提 ...
- AI-Azure上的认知服务之Computer Vision(计算机视觉)
使用 Azure 的计算机视觉服务,开发人员可以访问用于处理图像并返回信息的高级算法. 主要包含如下高级算法: 标记视觉特性Tag visual features 检测对象Detect objects ...
- 计算机视觉和人工智能的状态:我们已经走得很远了 The state of Computer Vision and AI: we are really, really far away.
The picture above is funny. But for me it is also one of those examples that make me sad about the o ...
- Graph Cut and Its Application in Computer Vision
Graph Cut and Its Application in Computer Vision 原文出处: http://lincccc.blogspot.tw/2011/04/graph-cut- ...
- Computer vision labs
积累记录一些视觉实验室,方便查找 1. 多伦多大学计算机科学系 2. 普林斯顿大学计算机视觉和机器人实验室 3. 牛津大学Torr Vision Group 4. 伯克利视觉和学习中心 Pro ...
- Computer Vision: Algorithms and ApplicationsのImage processing
实在是太喜欢Richard Szeliski的这本书了.每一章节(after chapter3)都详述了该研究方向比較新的成果.还有很多很多的reference,假设你感兴趣.全然能够看那些參考论文 ...
- 【E2EL5】A Year in Computer Vision中关于图像增强系列部分
http://www.themtank.org/a-year-in-computer-vision 部分中文翻译汇总:https://blog.csdn.net/chengyq116/article/ ...
随机推荐
- python之reload用法
一.python2和python3的区别 python2中可以直接使用reload().python3中需要从库中导入,有两种方法: >>> from imp import relo ...
- 【阿里云IoT+YF3300】14.阿里IoT Studio打造手机端APP
在上一篇<13.阿里云IoT Studio WEB监控界面构建>中,我们介绍了用阿里云IoT Studio(原Link Develop)可视化构建WEB界面程序.本篇文章将介绍用阿里云Io ...
- MySQL必知必会官方提供的数据库和表
创建表 Create customers table CREATE TABLE customers ( cust_id int NOT NULL AUTO_INCREMENT, cust_name c ...
- 《C# 爬虫 破境之道》:第二境 爬虫应用 — 第五节:小总结带来的优化与重构
在上一节中,我们完成了一个简单的采集示例.本节呢,我们先来小结一下,这个示例可能存在的问题: 没有做异常处理 没有做反爬应对策略 没有做重试机制 没有做并发限制 …… 呃,看似平静的表面下还是隐藏着不 ...
- 《Redis5.x入门教程》之准备工作、数据类型
关注公众号:CoderBuff,回复"redis"获取<Redis5.x入门教程>完整版PDF. 第一章 · 准备工作 Redis安装 Redis5.0.7下载地址:h ...
- RF-ui自动化
1.关于时间等待 Wait Until Keyword Succeeds 3x 300ms Wait Until Element Is Visible ${x ...
- C#中HashSet的重复性与判等运算重载
目录 一个故事-- 一个繁荣的遥远国度:泛型容器 但是我也不确定容器里能放些什么东西啊 一个英勇的皇家骑士:HashSet 值类型的HashSet 引用类型的HashSet 另外一个--故--事?? ...
- Apache安装使用笔记
下载 打开网页http://httpd.apache.org/,点击 在download页面点击 然后在新页面选择 在新窗口选择 选择32位或64位apache下载,此处下载64位的apache: h ...
- dotnetcore3.1 WPF 中使用依赖注入
dotnetcore3.1 WPF 中使用依赖注入 Intro 在 ASP.NET Core 中默认就已经集成了依赖注入,最近把 DbTool 迁移到了 WPF dotnetcore 3.1, 在 W ...
- C# 四则运算及省市选择及日月选择
using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; usin ...