问题: permu

时间限制: 30 Sec  内存限制: 512 MB

题面


题目描述

给出一个长度为n的排列P(P1,P2,...Pn),以及m个询问。每次询问某个区间[l,r]中,最长的值域

连续段长度。

输入格式

第一行两个整数n,m。

接下来一行n个整数,描述P。

接下来m行,每行两个整数l,r,描述一组询问。

输出格式

对于每组询问,输出一行一个整数,描述答案。

样例输入

8 3
3 1 7 2 5 8 6 4
1 4
5 8
1 7

样例输出

3
3
4

题解


线段树+莫队。

考虑维护区间连续值域长度最大值。

首先显然莫队。(毕竟是蒟蒻我在莫队专题里遇到的题目……)

序列操作、多次询问,最关键的是无修!(没学过带修莫队不行啊 /理直气壮)

于是考虑怎么在不同区间内转移。

我们先种一棵值域线段树维护点的存在与否。

我们假设li为某段区间从左边界开始的最长值域连续段,ri为从右边界开始的最长值域连续段,mi为区间中最长值域连续段,考虑如何转移。

当push_up的时候,li由左儿子的li转移而来。特殊地,我们考虑左儿子整个区间连续,则li由左儿子的区间大小加上右儿子的li转移而来。

同理,ri由右儿子的ri转移。特殊情况为右儿子的区间大小加上左儿子的ri。

考虑mi的转移。显然mi由左儿子的mi和右儿子的mi以及左儿子的ri与右儿子的li组成的新区间转移而来。

注意我们开的是值域线段树,因此可以保证区间的连续性。

于是线段树维护3个标记我们就可以方便的进行转移了。

然后就是莫队板子。不断在线段树中插入点,删除点并进行转移统计答案。

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define rint register int
using namespace std;
int n,m,a[],tk[],belong[],l,r,sum_q,ans[];
struct node1{int li,ri,mi,size;}t[];
struct node2{int l,r,id;}que[];
inline bool cmp(node2 a,node2 b)
{
return (belong[a.l]^belong[b.l])?belong[a.l]<belong[b.l]:((belong[a.l]&)?a.r<b.r:a.r>b.r);
}
inline void build(rint k,rint l,rint r)
{
if(l==r){t[k].size=;return ;}
int mid=(l+r)>>;
build(k<<,l,mid);
build(k<<|,mid+,r);
t[k].size=t[k<<].size+t[k<<|].size;
return ;
}
inline void update(rint k)
{
t[k].li=t[k<<].li;t[k].ri=t[k<<|].ri;
if(t[k<<].li==t[k<<].size)t[k].li+=t[k<<|].li;
if(t[k<<|].ri==t[k<<|].size)t[k].ri+=t[k<<].ri;
// cout<<"left:"<<t[k<<1].mi<<" right:"<<t[k<<1|1].mi<<" mid:"<<t[k<<1].ri+t[k<<1|1].li<<endl;
t[k].mi=max(max(t[k<<].mi,t[k<<|].mi),t[k<<].ri+t[k<<|].li);
}
inline void change(rint k,rint p,rint u,rint l,rint r)
{
// cout<<"change:"<<p<<endl;
if(l==u&&r==u)
{
// cout<<p<<endl;
t[k].mi=p;t[k].li=p;t[k].ri=p;
// cout<<"mi:"<<t[k].mi<<endl;
return ;
}
rint mid=(l+r)>>;
if(u<=mid)change(k<<,p,u,l,mid);
else change(k<<|,p,u,mid+,r);
update(k);//cout<<t[k].mi<<endl;
return ;
}
int main()
{
scanf("%d %d",&n,&m);
sum_q=(int)sqrt(n);
for(rint i=;i<=n;++i)
{
scanf("%d",&a[i]);
belong[i]=i/sum_q+;
}
build(,,n);
for(rint i=;i<=m;++i)
{
scanf("%d %d",&que[i].l,&que[i].r);
que[i].id=i;
}
sort(que+,que+m+,cmp);
for(rint i=que[].l;i<=que[].r;++i)
{
tk[a[i]]++;
if(tk[a[i]]==)change(,,a[i],,n);
}
ans[que[].id]=t[].mi;
l=que[].l,r=que[].r;
for(rint i=;i<=m;++i)
{
// cout<<l<<" "<<que[i].l<<endl;
while(l<que[i].l){tk[a[l]]--;if(tk[a[l]]==)change(,,a[l],,n);l++;}
// cout<<l<<" "<<que[i].l<<endl;
while(l>que[i].l){l--;tk[a[l]]++;if(tk[a[l]]==)change(,,a[l],,n);}
while(r<que[i].r){r++;tk[a[r]]++;if(tk[a[r]]==)change(,,a[r],,n);}
while(r>que[i].r){tk[a[r]]--;if(tk[a[r]]==)change(,,a[r],,n);r--;}
ans[que[i].id]=t[].mi;
}
for(rint i=;i<=m;++i)
cout<<ans[i]<<endl;
return ;
}

最开始没设初始区间调了半个小时……

ps:此题需要卡常,最好使用奇偶性排序法QAQ(18000(TLE63)->12000(AC))

「题解」:[BZOJ4358]permu的更多相关文章

  1. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  2. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  3. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  4. 「题解」:[loj2763][JOI2013]现代豪宅

    问题 A: 现代豪宅 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...

  5. 「题解」:$Six$

    问题 A: Six 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 来写一篇正经的题解. 每一个数对于答案的贡献与数本身无关,只与它包含了哪几个质因数有关. 所以考虑二 ...

  6. 「题解」:$Smooth$

    问题 A: Smooth 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 维护一个队列,开15个指针,对应前15个素数. 对于每一次添加数字,暴扫15个指针,将指针对应 ...

  7. 「题解」:Kill

    问题 A: Kill 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 80%算法 赛时并没有想到正解,而是选择了另一种正确性较对的贪心验证. 对于每一个怪,我们定义它的 ...

  8. 「题解」:y

    问题 B: y 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 考虑双向搜索. 定义$cal_{i,j,k}$表示当前已经搜索状态中是否存在长度为i,终点为j,搜索过边 ...

  9. 「题解」:x

    问题 A: x 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 赛时想到了正解并且对拍了很久.对拍没挂,但是评测姬表示我w0了……一脸懵逼. 不难证明,如果对于两个数字 ...

随机推荐

  1. HDU1285-确定比赛名次-拓扑排序板子题

    有N个比赛队(1<=N<=500),编号依次为1,2,3,....,N进行比赛,比赛结束后,裁判委员会要将所有参赛队伍从前往后依次排名,但现在裁判委员会不能直接获得每个队的比赛成绩,只知道 ...

  2. tensorflow 模型加载(没有checkpoint文件或者说只加载其中一个模型)

    1.如果有checkpoint文件的话,加载模型很简单: 第一步:都是加载图: with tf.Session() as sess: saver=tf.train.import_meta_graph( ...

  3. 前端开发者进阶之ECMAScript新特性--Object.create

    前端开发者进阶之ECMAScript新特性[一]--Object.create   Object.create(prototype, descriptors) :创建一个具有指定原型且可选择性地包含指 ...

  4. 3.3_springBoot2.1.x检索之RestHighLevelClient方式

    1.版本依赖 注意对 transport client不了解先阅读官方文档: transport client(传送门) 这里需要版本匹配,如失败查看官网或百度. pom.xml <?xml v ...

  5. 大道浮屠诀---mysql5.7.28 for linux安装

    环境: redhat6.5 MySQL Community Server 5.7.28 https://dev.mysql.com/downloads/mysql/5.7.html 安装RMP包的具体 ...

  6. Jmeter----函数助手参数化

    要填写开始日期和结束日期和赋值的变量名

  7. Selenium(一)---Selenium的安装和使用

    一.前言 最近在帮一个老师爬取网页内容,发现网页是动态加载的,为了拿到全部的网页数据,这里使用到了Selenium.Selenium 是一个用于Web应用程序测试的工具,它可以模拟真实浏览器,支持多种 ...

  8. vba增删改查数据库

    你在EXCEL中增加一个列名为ID,后在VBA中写以下代码,并引用Microsoft ActiveX Data Objects 2.8后执行Public Sub 写入SQL2008()Dim cnn ...

  9. Estimation

    Estimation 给出一个长度为n序列\(\{a_i\}\),将其划分成连续的K段,对于其中一段\([l,r]\),设其中位数为m,定义其权值为\(\sum_{i=l}^r|m-a_i|\),求最 ...

  10. .Net 动态编译(c# 脚本)

    1 用.NET提供的类动态编译代码字符串,生成DLL存于内存中,加载到程序域 2 用反射的方式调用这个DLL 将要被编译和执行的代码读入并以字符串方式保存声明CSharpCodeProvider对象实 ...