Frangi形态学滤波详解
利用Hessian矩阵的滤波函数Frangi,网上的文章只是把论文中的公式贴出来了。
我感觉分析下滤波函数是怎么起作用,还是挺有意思的一件事情。
Frangi滤波方法的论文是:
Frangi A F, Niessen W J, Vincken K L, et al. Multiscale vessel enhancement filtering[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer Berlin Heidelberg, 1998: 130-137.
Matlab版程序在:
https://ww2.mathworks.cn/matlabcentral/fileexchange/24409-hessian-based-frangi-vesselness-filter?s_tid=gn_loc_drop
我改写了一个python版的在:
https://github.com/yimingstyle/Frangi-filter-based-Hessian
这里我先只说二维方法。
Hessian矩阵是:
$$H=\left[ \begin{matrix} I_{xx} & I_{xy} \\ I_{yx} & I_{yy} \end{matrix} \right] \tag{1} $$
由于Hessian是二阶偏导数组成的,对噪声非常敏感。就像使用拉普拉斯算子进行边缘检测一样,首先进行平滑非常必要。
所以论文中首先对图像进行高斯滤波,又因为高斯滤波和求Hessian矩阵这两个操作可以同步进行,那就合并了,直接对高斯滤波矩阵求二阶导数了。
但是接下来我们分析Frangi滤波的时候一直带着这个高斯滤波器太麻烦了,我们就认定高斯滤波是单独在求Hessian之前对预处理好了。
Frangi滤波的大致步骤是:
1.求Hessian矩阵:对应函数 Hessian2D()
用卷积核$$G_{xx}$$对图像进行卷积操作得到$$I_{xx}$$,其中卷积核是$$\left[ \begin{matrix} 0&0&0\\1 &-2&1\\0&0&0 \end{matrix} \right] \tag{1} $$
以此类推得到$$I_{xy}$$和$$I_{yy}$$
2.求Hessian矩阵的两个特征值:对应函数 eig2image()
$$\left| \lambda E-H \right|=0$$
$$\left|\left[ \begin{matrix} E-I_{xx} & E-I_{xy} \\E-I_{yx} & E-I_{yy} \end{matrix} \right]\right|=0\tag{1} $$
构建两个变量:$$R_{b}=\frac{ \lambda_1 }{ \lambda_2 }$$和$$S=\sqrt{R_{b}^2-\lambda_2^2}$$
我们可以根据图像形态把图像中的像素大致分为三类:
1)背景,它们的灰度分布较均匀。任意方向上曲率都较小。
2)孤立的点,角点,它在任意方向上的曲率都很大。
3)血管处,一般获取的图像中,血管这个圆珠形态沿径向方向λ2上的曲率始终较大,轴向方向λ2上较小。
3.再根据Rb和S构建响应函数:
$$V_o=\left| \begin{matrix}0 if \lambda_2>0 \\ (1-\frac{R_{b}^2}{2\beta^2})^2 ( 1-( -\frac{S^2}{2c^2} )^2 ) \end{matrix} \right| \tag{1} $$
式中条件:λ2>0,这是要看我们观测的是黑色背景还是白色背景,要是白背景那就是λ2<0。这个在程序中是根据“BlackWhite”这一参数选择的。
| 背景 | 孤立点 | 血管 | |
| 特征值 | λ1小 λ2小 | λ1大 λ2大 | λ1小 λ2大 |
| A和B的绝对值 | A 不定 B较小 | A 接近0 B较大 | A 接近1 B较大 |
可以看到A对孤立点有抑制作用,B对背景有抑制作用,最后剩下的只有血管处的信号响应强烈。
式中的B(贝塔,用latex公式打出来直接就换行了,所以用B代替一下)用来调节区分块状区域和条状区域的敏感程度,在程序中是“FrangiBetaOne”。
如果B(贝塔)很大,那么A接近1,对孤立区域抑制就减弱了。而B(贝塔)很小,A很容易受到Rb的影响趋于0,那么在血管的弯曲处,也容易被抑制。
c影响滤波后图像的整体平滑程度。程序中是“FrangiBetaTwo”。
S对血管处的响应起关键作用,如果c较大,S的变化程度相对被压制了,图像就变得平滑。c很小,把S放大了,那么滤波后的图像(也就是滤波器的响应)就变得波动较大。
这个滤波器只有在卷积尺度和血管宽度最接近的时候效果最好。如何确定卷积尺寸呢,最直接也是最有效的方法就是--枚举法。
所以程序中就是用不同的卷积尺度去做滤波,得到的多幅滤波后图像中,在每一点处选择响应值最高的结果。函数中“FrangiScaleRange”就是枚举的尺度范围。
这一点也很好理解。我们是用高斯卷积核的二阶导数求Hessian矩阵的。
高斯函数的标准差表示卷积尺度(论文中是标准差的3倍),高斯滤波是按照高斯函数给某一点处及其周围像素设定权重,加权求平均。
所以假设我们的卷积尺度比血管宽度大很多,那么得到的卷积结果就会被背景处拉低,因为背景处的灰度梯度变化是较小的。
而当卷积尺度比血管宽度小很多时,无论噪声还是块状区域都会被滤波器保留。
Frangi形态学滤波详解的更多相关文章
- 电容参数:X5R,X7R,Y5V,COG 详解
电容参数:X5R,X7R,Y5V,COG 详解 文章来源:http://www.hzlitai.com.cn/article/ARM9-article/cphard/1777.html 仅供分享学习~ ...
- SIFT算法详解(转)
http://blog.csdn.net/zddblog/article/details/7521424 目录(?)[-] 尺度不变特征变换匹配算法详解 Scale Invariant Feature ...
- 【转】 SIFT算法详解
尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd zddmail@gmail.com 对于初学者,从Davi ...
- EasyPR--开发详解
我正在做一个开源的中文车牌识别系统,Git地址为:https://github.com/liuruoze/EasyPR. 我给它取的名字为EasyPR,也就是Easy to do Plate Reco ...
- Kintinuous 相关论文 Volume Fusion 详解
近几个月研读了不少RGBD-SLAM的相关论文,Whelan的Volume Fusion系列文章的效果确实不错,而且开源代码Kintinuous结构清晰,易于编译和运行,故把一些学习时自己的理解和经验 ...
- 18.Llinux-触摸屏驱动(详解)
本节的触摸屏驱动也是使用之前的输入子系统 1.先来回忆之前第12节分析的输入子系统 其中输入子系统层次如下图所示, 其中事件处理层的函数都是通过input_register_handler()函数注册 ...
- 深度学习之卷积神经网络(CNN)详解与代码实现(一)
卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目 ...
- matlab-霍夫变换详解(判断正方形长方形)
霍夫变换 霍夫变换是1972年提出来的,最开始就是用来在图像中过检测直线,后来扩展能检测圆.曲线等. 直线的霍夫变换就是 把xy空间的直线 换成成 另一空间的点.就是直线和点的互换. 我们在初中数学中 ...
- SIFT算法详解
尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd zddmail@gmail.com or (zddhub@ ...
随机推荐
- eBPF Tracing 入门教程与实例
原文链接 Learn eBPF Tracing: Tutorial and Examples译者 弃余 在 LPC'18(Linux Plumber's conference) 会议上,至少有24个关 ...
- @hdu - 6427@ Problem B. Beads
目录 @description@ @solution@ @accepted code@ @details@ @description@ 有 m 种不同颜色的珠子,颜色分别为 1~m,每一种颜色的珠子有 ...
- 将Eclipse中文注释字体变大方法
今天下了最新的eclipse玩,结果发现注释变得灰常小,差点看瞎哥24K氪金狗眼 于是在网上找了找解决方法,结果都不对 最后自己试出来了... 方法: Window --> Preferenc ...
- call,apply,bind详解
为什么要改变this指向? 我们知道bind,call,apply的作用都是用来改变this指向的,那为什么要改变this指向呢?请看下面的例子: var name="lucy"; ...
- Lifecycle mapping "org.eclipse.m2e.jdt.JarLifecycleMapping" Eclipse Maven报错
eclipse 项目中报错Lifecycle mapping "org.eclipse.m2e.jdt.JarLifecycleMapping" is not available, ...
- 2019-10-18-WPF-高速书写-StylusPlugIn-原理
title author date CreateTime categories WPF 高速书写 StylusPlugIn 原理 lindexi 2019-10-18 21:23:46 +0800 2 ...
- JAXB常用注解讲解(超详细)
简介: JAXB(Java Architecture for XML Binding) 是一个业界的标准,是一项可以根据XML Schema产生Java类的技术.该过程中,JAXB也提供了将XML实例 ...
- Linux 内核 MCA 总线
微通道体系(MCA)是一个 IBM 标准, 用在 PS/2 计算机和一些笔记本电脑. 在硬件级别, 微通道比 ISA 有更多特性. 它支持多主 DMA, 32-位地址和数据线, 共享中断线, 和地理 ...
- GitHub上传项目到远程库
写文章 GitHub上传项目到远程库 GitHub上传项目到远程库 今天把想把文件托管到GitHub仓库,但是执行一系列的命令以后,刷新GitHub网站还是没有任何更新.后来终于找到原因,原来 ...
- node-sass安装报错
npm install --save-dev node-sass --registry=https://registry.npm.taobao.org --disturl=https://npm.ta ...