问题 B: $e$

时间限制: 2 Sec  内存限制: 512 MB

题面


题面谢绝公开。

题解


话说一天考两个主席树这回事……

正解可以叫树上主席树??(脸哥说也叫主席树上树???)

对于树上的每一条链建主席树,支持链上查询前驱和后继。

对于所有的$p[i]$,他说怎么得到就按他说的做就好,然后求所有$p[i]$的$LCA$。

对于每个$p[i]$到$LCA$的链上查一次$r$的前驱和后继更新答案即可。

注意:参数不要传反、别一个特判把自己判掉、pre和nxt的代码不要粘贴,粘贴了不要忘记改掉内部递归函数……

(昨天下午大概帮3、4个人调这题代码???RP++)

#include<bits/stdc++.h>
#define rint register int
using namespace std;
const int N=,M=;
inline void read(int &A)
{
A=;int B=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')B=-;ch=getchar();}
while(ch>=''&&ch<=''){A=(A<<)+(A<<)+ch-'';ch=getchar();}
A=A*B;
}
int n,q,tp,ans,a[N],p[N];
int v[N<<],nxt[N<<],first[N<<],tot;
int root[N],ls[N<<],rs[N<<],val[N<<],cnt;
int dep[N],f[N][];
inline void build_line(int uu,int vv)
{
v[++tot]=vv,nxt[tot]=first[uu];
first[uu]=tot;return ;
}
inline void insert(int &k,int l,int r,int his,int dat)
{
k=++cnt;val[k]=val[his]+;
if(l==r)return ;
ls[k]=ls[his],rs[k]=rs[his];
int mid=(l+r)>>;
if(dat<=mid)insert(ls[k],l,mid,ls[his],dat);
else insert(rs[k],mid+,r,rs[his],dat);
}
inline int get_pre(int k1,int k2,int l,int r,int dat)
{
if(!(val[k2]-val[k1]))return ;
if(l==r)return l;int mid=(l+r)>>;
if(dat<=mid)return get_pre(ls[k1],ls[k2],l,mid,dat);
int lin=get_pre(rs[k1],rs[k2],mid+,r,dat);
if(!lin)return get_pre(ls[k1],ls[k2],l,mid,dat);
return lin;
}
inline int get_nxt(int k1,int k2,int l,int r,int dat)
{
if(!(val[k2]-val[k1]))return ;
if(l==r)return l;int mid=(l+r)>>;
if(dat>mid)return get_nxt(rs[k1],rs[k2],mid+,r,dat);
int lin=get_nxt(ls[k1],ls[k2],l,mid,dat);
if(!lin)return get_nxt(rs[k1],rs[k2],mid+,r,dat);
return lin;
}
inline void bfs()
{
queue <int> q;
q.push();dep[]=;
while(!q.empty())
{
int x=q.front();q.pop();
for(rint i=first[x];i;i=nxt[i])
{
int y=v[i];if(dep[y])continue;
dep[y]=dep[x]+;f[y][]=x;
for(rint i=;i<=;++i)
f[y][i]=f[f[y][i-]][i-];
q.push(y);
}
}
return ;
}
inline int get_lca(int x,int y)
{
if(dep[x]<dep[y])swap(x,y);
for(rint i=;i>=;--i)
if(dep[f[x][i]]>=dep[y])x=f[x][i];
if(x==y)return x;
for(rint i=;i>=;--i)
if(f[x][i]!=f[y][i])
x=f[x][i],y=f[y][i];
return f[x][];
}
inline void dfs_build(int x,int fa)
{
insert(root[x],,M,root[fa],a[x]);
for(rint i=first[x];i;i=nxt[i])
if(v[i]!=fa)dfs_build(v[i],x);
return ;
}
int main()
{
read(n),read(q),read(tp);
for(rint i=;i<=n;++i)read(a[i]);
for(rint i=,ST,EN;i<n;++i)
read(ST),read(EN),build_line(ST,EN),build_line(EN,ST);
dfs_build(,);bfs();
for(rint i=,r,k;i<=q;++i)
{
read(r),read(k);
for(rint j=,x;j<=k;++j)
read(x),p[j]=(x-+ans*tp)%n+;
int lca=p[];
for(rint j=;j<=k;++j)
lca=get_lca(lca,p[j]);
ans=0x7fffffff;
for(rint j=;j<=k;++j)
{
int pre=get_pre(root[f[lca][]],root[p[j]],,M,r);
int nxt=get_nxt(root[f[lca][]],root[p[j]],,M,r);
if(pre)ans=min(r-pre,ans);
if(nxt)ans=min(nxt-r,ans);
}
printf("%d\n",ans);
}
}

「题解」:$e$的更多相关文章

  1. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  2. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  3. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  4. 「题解报告」 P3167 [CQOI2014]通配符匹配

    「题解报告」 P3167 [CQOI2014]通配符匹配 思路 *和?显然无法直接匹配,但是可以发现「通配符个数不超过 \(10\) 」,那么我们可以考虑分段匹配. 我们首先把原字符串分成多个以一个通 ...

  5. Linux 小知识翻译 - 「RAID」

    最近术语「RAID」变得比较有名.「RAID」是指将多个HDD组合起来使用,从而提高存储可靠性的一种技术. 那么,关于 RAID 中的 「RAID 0」「RAID 1」「RAID 5」等各种「RAID ...

  6. 正则表达式从入门到放弃「Java」

    正则表达式能做什么? 正则表达式可以用来搜索.编辑或处理文本. 「都懂它可以处理文本,可到底是怎么回事?」 正则表达式的定义 百度百科:正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特 ...

  7. 「题解」:[loj2763][JOI2013]现代豪宅

    问题 A: 现代豪宅 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...

  8. Scala 学习(10)之「集合 」

    数组 定长数组 Array:采用()访问,而不是[],下标从 0 开始. val array1 = new Array[String](5) //创建数组 println(array1) //返回数组 ...

  9. JavaScript OOP 之「创建对象」

    工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...

  10. Facebook 发布「流程」

    时不时就会在面试过程中碰到有候选人问 Facebook 是否采用 Scrum 之类的敏捷方法,偶尔也会有中国的朋友问及 Facebook 上线流程.我通常会简单说几句,然后说「如果你真感兴趣的话,去搜 ...

随机推荐

  1. 看了Google编码规范,我突然有个感觉

    那么个编码规范,充分体现了西方人的自我感觉良好,以及以自己为中心的程度, 以及西方人对待事物的双重标准.

  2. python之常用的数据处理方法

    1.生成6位数验证码 "".join([random.choice(chars) for i in range(6)]) 2.密码加密 import hashlib def enc ...

  3. linux 两个进程通过 共享内存 通信例子

    例子1:两个进程通过共享内存通信,一个进程向共享内存中写入数据,另一个进程从共享内存中读出数据 文件1 创建进程1,实现功能,打印共享内存中的数据 #include <stdio.h> # ...

  4. TFS发布的时候出现 ENOENT: no such file or directory, stat 'E:\vsts-agent\_work\r57\a\KingEagle-Mysql-Dev\drop\12917.zip' 解决方案

    出现 ENOENT: no such file or directory, stat 'E:\vsts-agent\_work\r57\a\KingEagle-Mysql-Dev\drop\12917 ...

  5. 泛型(Generic)接口

    泛型接口例子:一个学生有一个独一无二的ID,但是每个学生的姓名不一定是唯一的. class Program { static void Main(string[] args) { Student< ...

  6. 通过网络socket获取对方 ip 和port

    int getpeername(int s, struct sockaddr *name, socklen_t *namelen);描述获取socket的对方地址struct sockaddr_in ...

  7. Apache 环境变量配置

    在path 中加入  C:\__S_D_K__\AndroidApache\apache-ant-1.9.14\bin 我的路径在C盘

  8. spring5.02版快速入门

    spring5.02版快速入门分为以下 四步, 1. 引入依赖 2. 创建beans.xml配置文件 3 创建相应的接口实现类(仅仅是快速创建,实现类不给任何方法) 4. 创建容器对象,根据id获取对 ...

  9. NX二次开发-UFUN工程图表格注释写入文本内容UF_TABNOT_set_cell_text

    NX9+VS2012 #include <uf.h> #include <uf_tabnot.h> #include <NXOpen/Part.hxx> #incl ...

  10. npm run 同时执行多个命令

    在项目中可能需要一套代码同时部署几套环境,每一次改动就需要同时打包N次.这时就需要能够一个命令同时打包多次,省去了很多麻烦. 这里我们需要用到 concurrently 这个 npm 包,能够实现我们 ...