问题 B: $e$

时间限制: 2 Sec  内存限制: 512 MB

题面


题面谢绝公开。

题解


话说一天考两个主席树这回事……

正解可以叫树上主席树??(脸哥说也叫主席树上树???)

对于树上的每一条链建主席树,支持链上查询前驱和后继。

对于所有的$p[i]$,他说怎么得到就按他说的做就好,然后求所有$p[i]$的$LCA$。

对于每个$p[i]$到$LCA$的链上查一次$r$的前驱和后继更新答案即可。

注意:参数不要传反、别一个特判把自己判掉、pre和nxt的代码不要粘贴,粘贴了不要忘记改掉内部递归函数……

(昨天下午大概帮3、4个人调这题代码???RP++)

#include<bits/stdc++.h>
#define rint register int
using namespace std;
const int N=,M=;
inline void read(int &A)
{
A=;int B=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')B=-;ch=getchar();}
while(ch>=''&&ch<=''){A=(A<<)+(A<<)+ch-'';ch=getchar();}
A=A*B;
}
int n,q,tp,ans,a[N],p[N];
int v[N<<],nxt[N<<],first[N<<],tot;
int root[N],ls[N<<],rs[N<<],val[N<<],cnt;
int dep[N],f[N][];
inline void build_line(int uu,int vv)
{
v[++tot]=vv,nxt[tot]=first[uu];
first[uu]=tot;return ;
}
inline void insert(int &k,int l,int r,int his,int dat)
{
k=++cnt;val[k]=val[his]+;
if(l==r)return ;
ls[k]=ls[his],rs[k]=rs[his];
int mid=(l+r)>>;
if(dat<=mid)insert(ls[k],l,mid,ls[his],dat);
else insert(rs[k],mid+,r,rs[his],dat);
}
inline int get_pre(int k1,int k2,int l,int r,int dat)
{
if(!(val[k2]-val[k1]))return ;
if(l==r)return l;int mid=(l+r)>>;
if(dat<=mid)return get_pre(ls[k1],ls[k2],l,mid,dat);
int lin=get_pre(rs[k1],rs[k2],mid+,r,dat);
if(!lin)return get_pre(ls[k1],ls[k2],l,mid,dat);
return lin;
}
inline int get_nxt(int k1,int k2,int l,int r,int dat)
{
if(!(val[k2]-val[k1]))return ;
if(l==r)return l;int mid=(l+r)>>;
if(dat>mid)return get_nxt(rs[k1],rs[k2],mid+,r,dat);
int lin=get_nxt(ls[k1],ls[k2],l,mid,dat);
if(!lin)return get_nxt(rs[k1],rs[k2],mid+,r,dat);
return lin;
}
inline void bfs()
{
queue <int> q;
q.push();dep[]=;
while(!q.empty())
{
int x=q.front();q.pop();
for(rint i=first[x];i;i=nxt[i])
{
int y=v[i];if(dep[y])continue;
dep[y]=dep[x]+;f[y][]=x;
for(rint i=;i<=;++i)
f[y][i]=f[f[y][i-]][i-];
q.push(y);
}
}
return ;
}
inline int get_lca(int x,int y)
{
if(dep[x]<dep[y])swap(x,y);
for(rint i=;i>=;--i)
if(dep[f[x][i]]>=dep[y])x=f[x][i];
if(x==y)return x;
for(rint i=;i>=;--i)
if(f[x][i]!=f[y][i])
x=f[x][i],y=f[y][i];
return f[x][];
}
inline void dfs_build(int x,int fa)
{
insert(root[x],,M,root[fa],a[x]);
for(rint i=first[x];i;i=nxt[i])
if(v[i]!=fa)dfs_build(v[i],x);
return ;
}
int main()
{
read(n),read(q),read(tp);
for(rint i=;i<=n;++i)read(a[i]);
for(rint i=,ST,EN;i<n;++i)
read(ST),read(EN),build_line(ST,EN),build_line(EN,ST);
dfs_build(,);bfs();
for(rint i=,r,k;i<=q;++i)
{
read(r),read(k);
for(rint j=,x;j<=k;++j)
read(x),p[j]=(x-+ans*tp)%n+;
int lca=p[];
for(rint j=;j<=k;++j)
lca=get_lca(lca,p[j]);
ans=0x7fffffff;
for(rint j=;j<=k;++j)
{
int pre=get_pre(root[f[lca][]],root[p[j]],,M,r);
int nxt=get_nxt(root[f[lca][]],root[p[j]],,M,r);
if(pre)ans=min(r-pre,ans);
if(nxt)ans=min(nxt-r,ans);
}
printf("%d\n",ans);
}
}

「题解」:$e$的更多相关文章

  1. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  2. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  3. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  4. 「题解报告」 P3167 [CQOI2014]通配符匹配

    「题解报告」 P3167 [CQOI2014]通配符匹配 思路 *和?显然无法直接匹配,但是可以发现「通配符个数不超过 \(10\) 」,那么我们可以考虑分段匹配. 我们首先把原字符串分成多个以一个通 ...

  5. Linux 小知识翻译 - 「RAID」

    最近术语「RAID」变得比较有名.「RAID」是指将多个HDD组合起来使用,从而提高存储可靠性的一种技术. 那么,关于 RAID 中的 「RAID 0」「RAID 1」「RAID 5」等各种「RAID ...

  6. 正则表达式从入门到放弃「Java」

    正则表达式能做什么? 正则表达式可以用来搜索.编辑或处理文本. 「都懂它可以处理文本,可到底是怎么回事?」 正则表达式的定义 百度百科:正则表达式是对字符串操作的一种逻辑公式,就是用事先定义好的一些特 ...

  7. 「题解」:[loj2763][JOI2013]现代豪宅

    问题 A: 现代豪宅 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...

  8. Scala 学习(10)之「集合 」

    数组 定长数组 Array:采用()访问,而不是[],下标从 0 开始. val array1 = new Array[String](5) //创建数组 println(array1) //返回数组 ...

  9. JavaScript OOP 之「创建对象」

    工厂模式 工厂模式是软件工程领域一种广为人知的设计模式,这种模式抽象了创建具体对象的过程.工厂模式虽然解决了创建多个相似对象的问题,但却没有解决对象识别的问题. function createPers ...

  10. Facebook 发布「流程」

    时不时就会在面试过程中碰到有候选人问 Facebook 是否采用 Scrum 之类的敏捷方法,偶尔也会有中国的朋友问及 Facebook 上线流程.我通常会简单说几句,然后说「如果你真感兴趣的话,去搜 ...

随机推荐

  1. 22-3concat

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  2. 生成对抗网络(GAN)的18个绝妙应用

    https://juejin.im/post/5d3fb44e6fb9a06b2e3ccd4e 生成对抗网络(GAN)是生成模型的一种神经网络架构. 生成模型指在现存样本的基础上,使用模型来生成新案例 ...

  3. vue之axios的使用

    一.环境安装 1.axios的安装 进入到对应工程目录执行: npm install axios 2.启动测试数据的API 测试项目地址:https://github.com/ShenJianPing ...

  4. 在jquery中应该使用prop方法来获取和设置checked属性,不应该使用attr。

    在jquery中应该使用prop方法来获取和设置checked属性,不应该使用attr. $("#checkAll").prop("checked", true ...

  5. windows10,nodejs安装步骤

    系统: windows10 1.下载: https://nodejs.org/en/ 2.下载最新版本,根据你的系统选择32位或者64位: 3.建议选择源码源码安装,不选择编译后的安装 如: 4.进行 ...

  6. Dart编程循环

    有时,某些指令需要重复执行.循环是一种理想的方法.循环表示必须重复的一组指令.在循环的上下文中,重复被称为迭代 . 下图说明了循环的分类 让我们开始讨论确定循环.迭代次数是确定/固定的循环称为确定循环 ...

  7. thinkphp PATH_INFO支持

    如果发生在本地测试正常,但是一旦部署到服务器环境后会发生只能访问首页的情况,很有可能是你的服务器或者空间不支持PATH_INFO所致. 系统内置提供了对PATH_INFO的兼容判断处理,但是不能确保在 ...

  8. bzoj1012题解

    [解题思路] 强制在线线段树/树状数组,没什么好说的..复杂度O(mlog2m)(线段树)或O(mlog22m)(树状数组). [参考代码] (还naive的时候写的zkw真是翔..) #includ ...

  9. Lua的控制流程

    一.条件语句 if语句 if语句是由一个布尔表达式作为条件判断,或者紧跟其他语句组成. if else语句 if语句可以是else搭配使用,在if条件表达式为false时执行else语句代码 if嵌套 ...

  10. 全局唯一标识符(GUID,Globally Unique Identifier)

    全局唯一标识符(GUID,Globally Unique Identifier)是一种由算法生成的二进制长度为128位的数字标识符.GUID主要用于在拥有多个节点.多台计算机的网络或系统中.在理想情况 ...