1010: [HNOI2008]玩具装箱toy

Time Limit: 1 Sec Memory Limit: 162 MB

Submit: 12665 Solved: 5540

[Submit][Status][Discuss]

Description

  P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京。他使用自己的压缩器进行压

缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中。P教授有编号为1…N的N件玩具,第i件玩具经过

压缩后变成一维长度为Ci.为了方便整理,P教授要求在一个一维容器中的玩具编号是连续的。同时如果一个一维容

器中有多个玩具,那么两件玩具之间要加入一个单位长度的填充物,形式地说如果将第i件玩具到第j个玩具放到一

个容器中,那么容器的长度将为 x=j-i+Sigma(Ck) i<=K<=j 制作容器的费用与容器的长度有关,根据教授研究,

如果容器长度为x,其制作费用为(X-L)^2.其中L是一个常量。P教授不关心容器的数目,他可以制作出任意长度的容

器,甚至超过L。但他希望费用最小.

Input

  第一行输入两个整数N,L.接下来N行输入Ci.1<=N<=50000,1<=L,Ci<=10^7

Output

  输出最小费用

Sample Input

5 4

3

4

2

1

4

Sample Output

1


题解

本蒟蒻斜率优化第一题,真的玄学。
很容易我们就能得出转移方程:
dp[i]=min(dp[j]+(sum[i]+i-sum[j]-j-l-1)^2)(j < i)
但这样时间复杂度为O(n^2) n=50000会炸飞。
所以我们考虑斜率优化。
首先令A(i)=sum[i]+i。
B(i)=A(i)+l+1。
所以我们的转移方程可化简为:
dp[i]=dp[j]+(A(i)-B(j))^2;
所以dp[i]=dp[j]+A(i)^2-2*A(i)*B(i)+B(i)^2;
观察式子,A(i)^2只与i有关,所以先不做考虑。
再设X(i)=B(i),Y(i)=B(i)^2+dp[i];
继续化简得:
dp[i]=Y(j)-2*X(i)*A(i)+A(i)^2;
移项得
Y(j)=(dp[i]+2*X(i)*A(i)-A(i)^2;
发现上式形容y=kx+b。2*A(i)为斜率,而A(i)又是单调递增的,所以斜率单调递增,所以我们只需要维护
一个凸包,用单调队列。 首先先根据当前斜率判断队头是否合法,若不合法则弹出队头。
然后用队头更新dp[i]。
最后再让当前元素入队,维护凸包的性质,弹队尾。 时间复杂度O(n)。

代码

#include<bits/stdc++.h>
#define int long long using namespace std;
const int MAXN = 500005; int n,l;
int dp[MAXN],sum[MAXN];
int head=1,tail=1,q[MAXN]; inline double A(int i){return sum[i]+i;}
inline double B(int i){return A(i)+l+1;}
inline double Y(int i){return dp[i]+B(i)*B(i);}
inline double X(int i){return B(i);}
inline double sp(int i,int j){return 1.0*(Y(j)-Y(i))/(X(j)-X(i));} signed main() {
ios::sync_with_stdio(false);
cin>>n>>l;
for(register int i=1; i<=n; i++) {
int x;
cin>>x;
sum[i]=sum[i-1]+x;
}
for(register int i=1; i<=n; i++){
while(head<tail and 2*A(i)>sp(q[head],q[head+1])) head++;
dp[i]=dp[q[head]]+(A(i)-B(q[head]))*(A(i)-B(q[head]));
while(head<tail and sp(i,q[tail-1])<sp(q[tail-1],q[tail])) tail--;
q[++tail]=i;
}
cout<<dp[n]<<endl;
return 0;
}

BZOJ 1010 (HNOI 2008) 玩具装箱的更多相关文章

  1. [bzoj 1010][HNOI 2008]玩具装箱

    传送门 Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压 缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号 ...

  2. 【BZOJ 1010】 [HNOI2008]玩具装箱toy (斜率优化)

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9330  Solved: 3739 Descriptio ...

  3. BZOJ 1010: [HNOI2008]玩具装箱toy(DP+斜率优化)

    [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊 ...

  4. BZOJ 1010 [HNOI2008]toy 玩具装箱

    2017.6.9:经过我的不懈努力,终于把此题A掉了,但上凸和下凸总是那么让人费解…… P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意 ...

  5. 【BZOJ 1010】 [HNOI2008]玩具装箱toy

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  6. [HNOI 2008]玩具装箱

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压 缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1.. ...

  7. 解题:HNOI 2008 玩具装箱

    题面 搞了一晚上斜率优化,大概懂了一点,写写 原来常用的优化dp方法:做前缀和,预处理,数据结构维护 现在有转移方程长这样的一类dp:$dp[i]=min(dp[i],k[i]*x[j]+y[j]+c ...

  8. [bzoj 1004][HNOI 2008]Cards(Burnside引理+DP)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1004 分析: 1.确定方向:肯定是组合数学问题,不是Polya就是Burnside,然后题目上 ...

  9. BZOJ 1009 HNOI 2008 GT考试 递推+矩乘

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3679  Solved: 2254[Submit][Statu ...

  10. [bzoj 1005][HNOI 2008]明明的烦恼(prufer数列+排列组合)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1005 分析: 首先prufer数列:http://baike.baidu.com/view/1 ...

随机推荐

  1. android webview 输入法键盘遮挡输入框的问题

    新建一个工具类: /** * 解决webView键盘遮挡问题的类 * Created by zqy on 2016/11/14. */ public class KeyBoardListener { ...

  2. Django完成常用四大功能

    返回主目录:Django框架 内容目录: 1.pycharm连接数据库及相应操作 2.手撸登录注册编辑删除 2.1 登录.注册 2.2 ORM简单操作 2.3 编辑.删除 3.完整代码 一.pycha ...

  3. set -x 调试shell

    在上面的结果中,前面有“+”号的行是shell脚本实际执行的命令,前面有“++”号的行是执行trap机制中指定的命令,其它的行则是输出信息. shell的执行选项除了可以在启动shell时指定外,亦可 ...

  4. vue导出table内容至excel——转

    一:在项目中需要安装2个依赖项,如下命令: npm install --save file-saver xlsx 二:在vue文件中如下使用即可: <template> <div c ...

  5. 揭秘!2周实现上云上市,阿里云SaaS上云工具包如何打造新云梯?

    提到“上云”,很多人会理解成上IaaS,比如买一些计算.存储和网络云产品,把自己的应用系统部署上去.这的确是通常意义的上云.但对SaaS而言,需要从产品.商业.服务,三个维度考虑SaaS伙伴和客户的痛 ...

  6. flutter 图片为空报错

    imgpath != null ? Image.network(imgpath) : Container() 如果不判断imgpath 为空 network 内的url 为空就会报错

  7. 求树的最大独立集,最小点覆盖,最小支配集 贪心and树形dp

    目录 求树的最大独立集,最小点覆盖,最小支配集 三个定义 贪心解法 树形DP解法 (有任何问题欢迎留言或私聊&&欢迎交流讨论哦 求树的最大独立集,最小点覆盖,最小支配集 三个定义 最大 ...

  8. python从入门到大神---Python的jieba模块简介

    python从入门到大神---Python的jieba模块简介 一.总结 一句话总结: jieba包是分词技术,也就是将一句话分成多个词,有多种分词模型可选 1.分词模块包一般有哪些分词模式(比如py ...

  9. ionic-Javascript:ionic 上拉菜单(ActionSheet)

    ylbtech-ionic-Javascript:ionic 上拉菜单(ActionSheet) 1.返回顶部 1. ionic 上拉菜单(ActionSheet) 上拉菜单(ActionSheet) ...

  10. RoadFlowCore 解决方案介绍及开发概述

    RoadFlow解决方案如下: RoadFlow.Business:业务层 RoadFlow.Integrate:组织机构获取层(如果你系统要使用第三方组织架构的时候修改这里面的方法即可) RoadF ...