Time Limit: 10 Sec Memory Limit: 512 MB

Submit: 2693 Solved: 1563

[Submit][Status][Discuss]

Description

21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳。作为一名青春阳光好少年,atm 一直坚持与起床困难综合症作斗争。通过研究相关文献,他找到了该病的发病原因:在深邃的太平洋海底中,出现了一条名为 drd 的巨龙,它掌握着睡眠之精髓,能随意延长大家的睡眠时间。正是由于 drd 的活动,起床困难综合症愈演愈烈,以惊人的速度在世界上传播。为了彻底消灭这种病,atm 决定前往海底,消灭这条恶龙。历经千辛万苦,atm 终于来到了 drd 所在的地方,准备与其展开艰苦卓绝的战斗。drd 有着十分特殊的技能,他的防御战线能够使用一定的运算来改变他受到的伤害。具体说来,drd 的防御战线由 n扇防御门组成。每扇防御门包括一个运算op和一个参数t,其中运算一定是OR,XOR,AND中的一种,参数则一定为非负整数。如果还未通过防御门时攻击力为x,则其通过这扇防御门后攻击力将变为x op t。最终drd 受到的伤害为对方初始攻击力x依次经过所有n扇防御门后转变得到的攻击力。由于atm水平有限,他的初始攻击力只能为0到m之间的一个整数(即他的初始攻击力只能在0,1,…,m中任选,但在通过防御门之后的攻击力不受 m的限制)。为了节省体力,他希望通过选择合适的初始攻击力使得他的攻击能让 drd 受到最大的伤害,请你帮他计算一下,他的一次攻击最多能使 drd 受到多少伤害。

Input

第1行包含2个整数,依次为n,m,表示drd有n扇防御门,atm的初始攻击力为0到m之间的整数。接下来n行,依次表示每一扇防御门。每行包括一个字符串op和一个非负整数t,两者由一个空格隔开,且op在前,t在后,op表示该防御门所对应的操作, t表示对应的参数。n<=10^5

Output

一行一个整数,表示atm的一次攻击最多使 drd 受到多少伤害。

Sample Input

3 10

AND 5

OR 6

XOR 7

Sample Output

1

HINT

【样例说明1】

atm可以选择的初始攻击力为0,1,…,10。

假设初始攻击力为4,最终攻击力经过了如下计算

4 AND 5 = 4

4 OR 6 = 6

6 XOR 7 = 1

类似的,我们可以计算出初始攻击力为1,3,5,7,9时最终攻击力为0,初始攻击力为0,2,4,6,8,10时最终攻击力为1,因此atm的一次攻击最多使 drd 受到的伤害值为1。

0<=m<=10^9

0<=t<=10^9

一定为OR,XOR,AND 中的一种

【运算解释】

在本题中,选手需要先将数字变换为二进制后再进行计算。如果操作的两个数二进制长度不同,则在前补0至相同长度。OR为按位或运算,处理两个长度相同的二进制数,两个相应的二进制位中只要有一个为1,则该位的结果值为1,否则为0。XOR为按位异或运算,对等长二进制模式或二进制数的每一位执行逻辑异或操作。如果两个相应的二进制位不同(相异),则该位的结果值为1,否则该位为0。 AND 为按位与运算,处理两个长度相同的二进制数,两个相应的二进制位都为1,该位的结果值才为1,否则为0。

例如,我们将十进制数5与十进制数3分别进行OR,XOR 与 AND 运算,可以得到如下结果:

       0101 (十进制 5)           0101 (十进制 5)           0101 (十进制 5)

       OR 0011 (十进制 3)    XOR 0011 (十进制 3)    AND 0011 (十进制 3)

       = 0111 (十进制 7)       = 0110 (十进制 6)        = 0001 (十进制 1)

题解

如果暴力显然是不行的,复杂度O(nm),只能40分。我们思考二进制的特性,分别让所有位都是0
与所有位都是1的数先走一遍,我们可以得到走完的两个数,按位思考,如果所有为都是0的数第i为
变成1,我们就不用管,让此位还是0就行了,直接累加答案,如果是0走完还是0,1走完还是1,我们
就设法让这位变成1,与m的大小进行比较即可。

代码

#include<bits/stdc++.h>

using namespace std;

int n,m,x;
int zero,one=0x7fffffff;
int ans; int main(){
ios::sync_with_stdio(false);
cin>>n>>m;
for(register int i=1;i<=n;i++){
char c[5];
cin>>c+1>>x;
if(c[1]=='A') zero&=x,one&=x;
else if(c[1]=='O') zero|=x,one|=x;
else if(c[1]=='X') zero^=x,one^=x;
}
for(int i=31;i>=0;i--){
if(zero&(1<<i)) ans+=(1<<i);
else if(one&(1<<i) && (1<<i)<=m) ans+=(1<<i),m-=(1<<i);
}
cout<<ans<<endl;
}

BZOJ 3668: [Noi2014]起床困难综合症的更多相关文章

  1. BZOJ 3668: [Noi2014]起床困难综合症( 贪心 )

    之前以为xor,or,and满足结合律...然后连样例都过不了 早上上体育课的时候突然想出来了...直接处理每一位是1,0的最后结果, 然后从高位到低位贪心就可以了... 滚去吃饭了.. ------ ...

  2. BZOJ 3668: [Noi2014]起床困难综合症【贪心】

    3668: [Noi2014]起床困难综合症 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2326  Solved: 1305[Submit][St ...

  3. 【刷题】BZOJ 3668 [Noi2014]起床困难综合症

    Description 21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳.作为一名青春阳光好少年,atm 一直坚持与起床困难综合症作斗争.通过研究相关文献,他找 ...

  4. 3668: [Noi2014]起床困难综合症

    3668: [Noi2014]起床困难综合症 https://www.lydsy.com/JudgeOnline/problem.php?id=3668 分析: 每一位分开考虑. 算出每一位为1,计算 ...

  5. 【BZOJ】3668: [Noi2014]起床困难综合症(暴力)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3668 这题很简单.............. 枚举每一位然后累计即可.. QAQ,第一次以为能1A, ...

  6. BZOJ 3668:起床困难综合症(贪心)

    分析:按位贪心即可. program sleep; var a,g:..]of longint; n,i,m,ans,t,len,x,y,v:longint; c:char; s:string; e: ...

  7. bzoj千题计划238:bzoj3668: [Noi2014]起床困难综合症

    http://www.lydsy.com/JudgeOnline/problem.php?id=3668 这..一位一位的来就好了呀 #include<cstdio> #include&l ...

  8. bzoj3668: [Noi2014]起床困难综合症

    从高位到低位枚举期望的应该是ans最高位尽量取一.如果该数最高位为o的话能够取得1直接更新ans否则判断该位取1是否会爆m不会的话就加上. #include<cstdio> #includ ...

  9. NOI2014 起床困难综合症

    3668: [Noi2014]起床困难综合症 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 225  Solved: 153[Submit][Stat ...

随机推荐

  1. 2. Vim 概念扫盲

    Frm: http://www.linuxidc.com/Linux/2013-05/84031p2.htm 了解Vim的三个基本模式 当我们安装完一个编辑器后,肯定会打开它,然后在里面输入点什么东西 ...

  2. LeetCode刷题笔记-回溯法-组合总和问题

    题目描述: <组合总和问题>给定一个无重复元素的数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合. cand ...

  3. 剑指offer——18打印从1到最大的n位数

    题目: 输入数字n,按顺序打印出从1到最大的n位十进制数.比如输入3,则打印出1.2.3一直到最大的3位数999. 题解: 注意大数溢出问题,故使用字符串更靠谱 class Solution { pu ...

  4. 2015年7个重要的Web设计趋势

    Web设计趋势每一年都会有所变化.但设计师的创意天赋是推动改变网页设计标准的法则.如果在2015年,网页缺少以下7个设计元素,必定被淘汰~ 1.排版更灵活 这部分的主要焦点在于,字体展现会受到新兴排版 ...

  5. scala 常用模式匹配类型

    模式匹配的类型 包括: 常量模式 变量模式 构造器模式 序列模式 元组模式 变量绑定模式等. 常量模式匹配 常量模式匹配,就是在模式匹配中匹配常量 objectConstantPattern{ def ...

  6. Python3入门机器学习经典算法与应用✍✍✍

    Python3入门机器学习经典算法与应用 整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的 ...

  7. 测试网中用户添加docker yum源

    /etc/yum.repo.d 中新建docker.repo 添加 [docker]name=CentOS-$releasever - Mediabaseurl=ftp://10.191.51.X/d ...

  8. Python3批量修改指定目录下面的图片/文件名

    需求: 从网上下载的N张.png图片保存到image目录中,将下载下来的图片全部重命名test1.png/test2.png... 实现代码: 目录结构: config-->setting.py ...

  9. 我也可以独立(引用JS外部文件)

    我也可以独立(引用JS外部文件) 通过前面知识学习,我们知道使用<script>标签在HTML文件中添加JavaScript代码,如图: JavaScript代码只能写在HTML文件中吗? ...

  10. django 项目分析

    项目要点 一.功能制定 1.用户功能 #.登陆 #.权限组功能 2.数据展示功能 #.列表展示 #.详细信息展示 #.图标展示 3.资源管理功能 #远程管理 #对远程服务器上的进程具有 #开启 #关闭 ...