The K−P factorization of a positive integer N is to write N as the sum of the P-th power of Kpositive integers. You are supposed to write a program to find the K−P factorization of N for any positive integers N, K and P.

Input Specification:

Each input file contains one test case which gives in a line the three positive integers N (≤), K (≤) and P (1). The numbers in a line are separated by a space.

Output Specification:

For each case, if the solution exists, output in the format:

N = n[1]^P + ... n[K]^P

where n[i] (i = 1, ..., K) is the i-th factor. All the factors must be printed in non-increasing order.

Note: the solution may not be unique. For example, the 5-2 factorization of 169 has 9 solutions, such as 1, or 1, or more. You must output the one with the maximum sum of the factors. If there is a tie, the largest factor sequence must be chosen -- sequence { , } is said to be larger than { , } if there exists 1 such that a​i​​=b​i​​ for i<L and a​L​​>b​L​​.

If there is no solution, simple output Impossible.

Sample Input 1:

169 5 2

Sample Output 1:

169 = 6^2 + 6^2 + 6^2 + 6^2 + 5^2

Sample Input 2:

169 167 3

Sample Output 2:

Impossible

 #include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
int n, k, p, maxFacSum = -;//maxFacSum用来记录最大底数之和
vector<int>fac, ans, temp;//最大底数不超过n的数,底数最优数序列,临时存放
void DFS(int index, int nowK, int sum, int facSum)
{
if (sum == n && nowK == k)//统计因素个数
{
if (facSum > maxFacSum)//更优的组合
{
ans = temp;
maxFacSum = facSum;
}
return;
}
if (sum > n || nowK > k)return;//超出限制
if (index - >= )//给出数组小角标的限制
{
temp.push_back(index);//记录数据
DFS(index, nowK + , sum + fac[index], facSum + index);//选
temp.pop_back();//弹出数据
DFS(index - , nowK, sum, facSum);//不选
}
}
int main()
{
cin >> n >> k >> p;
for (int i = ; pow(i, p) <= n; ++i)
fac.push_back(pow(i, p));//初始化底数不超过n的因素
DFS(fac.size() - , , , );//为了得到最大的因素数组,从最后一位开始向前搜索
if (maxFacSum == -)
cout << "Impossible" << endl;//没有找到满足的序列
else
{
cout << n << " = ";
for (int i = ; i < ans.size(); i++)
cout << ans[i] << "^" << p << (i == ans.size() - ? "" : " + ");
}
return ;
}

PAT甲级——A1103 Integer Factorization的更多相关文章

  1. PAT甲级1103. Integer Factorization

    PAT甲级1103. Integer Factorization 题意: 正整数N的K-P分解是将N写入K个正整数的P次幂的和.你应该写一个程序来找到任何正整数N,K和P的N的K-P分解. 输入规格: ...

  2. PAT甲级——1103 Integer Factorization (DFS)

    本文同步发布在CSDN:https://blog.csdn.net/weixin_44385565/article/details/90574720 1103 Integer Factorizatio ...

  3. PAT甲级1103 Integer Factorization【dfs】【剪枝】

    题目:https://pintia.cn/problem-sets/994805342720868352/problems/994805364711604224 题意: 给定一个数n,要求从1~n中找 ...

  4. PAT A1103 Integer Factorization (30 分)——dfs,递归

    The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...

  5. PAT A1103 Integer Factorization

    线性dfs,注意每次深搜完状态的维护~ #include<bits/stdc++.h> using namespace std; ; vector<int> v,tmp,pat ...

  6. A1103. Integer Factorization

    The K-P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...

  7. 【PAT】1103 Integer Factorization(30 分)

    The K−P factorization of a positive integer N is to write N as the sum of the P-th power of K positi ...

  8. PAT 甲级 1113 Integer Set Partition

    https://pintia.cn/problem-sets/994805342720868352/problems/994805357258326016 Given a set of N (> ...

  9. PAT甲级——A1113 Integer Set Partition

    Given a set of N (>) positive integers, you are supposed to partition them into two disjoint sets ...

随机推荐

  1. ERROR 1872

    解决 > start slave; ERROR (HY000): Slave failed to initialize relay log info structure from the rep ...

  2. leetcode-241-为运算表达式设置优先级*

    题目描述: 方法:分治* class Solution: def diffWaysToCompute(self, input: str) -> List[int]: if input.isdig ...

  3. case in

    #!/bin/bash source /etc/profilesource ~/.bashrc #自己定义$version_number case $version_number in3.0.17) ...

  4. nginx反向代理时有无”/”的辨析

    nginx反向代理是日常使用nginx时最常用到的功能之一.在配置url的过程中,“/”的有无经常是影响我们配置成功的关键,也是困扰我们的问题所在.在此,结合实际例子,作简要辨析. 场景一:利用根目录 ...

  5. luogu P1332 血色先锋队[bfs]

    题目描述 巫妖王的天灾军团终于卷土重来,血色十字军组织了一支先锋军前往诺森德大陆对抗天灾军团,以及一切沾有亡灵气息的生物.孤立于联盟和部落的血色先锋军很快就遭到了天灾军团的重重包围,现在他们将主力只好 ...

  6. Swig c++=>C#

    1.下载swig https://sourceforge.net/projects/swig/files/ 2.配置环境变量 path 添加你的swig路径 3.创建项目解决方案和一个win32 dl ...

  7. http://edu.manew.com/ ,蛮牛教育(很少免费),主要是unty3D和大数据方向。适合扫盲

    http://edu.manew.com/ ,蛮牛教育(很少免费),主要是unty3D和大数据方向.

  8. JS while 循环

    while循环:只要条件成立,就重复不断的执行循环体代码 while(条件判断) { 如果条件为true,则执行循环体代码 } while循环结构说明:   在循环开始前,必须要对变量初始化(声明变量 ...

  9. Java 高级面试知识点汇总!

    1.常用设计模式 单例模式:懒汉式.饿汉式.双重校验锁.静态加载,内部类加载.枚举类加载.保证一个类仅有一个实例,并提供一个访问它的全局访问点. 代理模式:动态代理和静态代理,什么时候使用动态代理. ...

  10. 08_springboot2.x自定义starter

    概述 starter:启动器 1.这个场景需要使用到的依赖是什么? 2.如何编写自动配置 规则: @Configuration //指定这个类是一个配置类 @ConditionalOnXXX //在指 ...