• 题目传送门

  • DP 经典题

  • 考虑从小到大把数加入排列内

  • 如下图(\(A\) 已经经过排序):

  • 我们考虑如上,在 \(i\) ( \(A_i\) )不断增大的过程中,维护上面直线 \(y=A_i\) 之下的部分的长度之和

  • 于是我们定义 DP :\(f[i][j][k][h]\) 表示插入了前 \(i\) 个数,分成 \(j\) 段,\(y=A_i\) 之下的部分长度之和为 \(k\) ,并且选出了 \(k\) ( \(0/1/2\) )个边界(第 \(1\) 个或第 \(n\) 个)的方案数

  • 注意这个 DP 中我们只需要保证每段是否在边界以及相邻两段之间有空位即可,不关心每段的实际位置

  • 不难发现,从 \(f[i][j][k][h]\) 转移到 \(f[i+1]\) ,\(k\) 的增量是固定的,即对于每个段的两端,将直线从 \(y=A_i\) 移到 \(y=A_{i+1}\) 时每端都会多出 \(A_{i+1}-A_i\) 的长度(边界除外),于是 \(f[i][j][k][h]\) 转移到 \(f[i+1]\) 时 \(k\) 的增量为 \((A_{i+1}-A_i)\times(2j-h)\) ,设其为 \(w\) 。下面讨论几种情况进行转移:

  • (1)新建一段,这一段可以放在边界除外的任意 \(j+1\) 个空隙内:

  • \[f[i+1][j+1][w][h]+=f[i][j][k][h]\times(j+1-h)
    \]

  • (2)合并两段:

  • \[f[i+1][j-1][w][h]+=f[i][j][k][h]\times(j-1)
    \]

  • (3)放在其中一段的其中一端,不改变段数,只让该段长加 \(1\) :

  • \[f[i+1][j][w][h]+=f[i][j][k][h]\times(2j-h)
    \]

  • (4)新建一段并钦定其为边界:

  • \[f[i+1][j+1][w][h+1]+=f[i][j][k][h]\times(2-h)
    \]

  • (5)接在最左段(不能为边界)的左端并钦定为边界,或接在最右段(不能为边界)的最右端并钦定为边界:

  • \[f[i+1][j][w][h+1]+=f[i][j][k][h]\times(2-h)
    \]

  • 答案为 \(\sum_{i=0}^Lf[n][1][i][2]\) ,复杂度 \(O(n^2L)\) ,可以将第一维滚动以优化空间

Code

#include <bits/stdc++.h>
#define vf(ii, jj) f[op ^ 1][ii][w][jj] template <class T>
inline void read(T &res)
{
res = 0; bool bo = 0; char c;
while (((c = getchar()) < '0' || c > '9') && c != '-');
if (c == '-') bo = 1; else res = c - 48;
while ((c = getchar()) >= '0' && c <= '9')
res = (res << 3) + (res << 1) + (c - 48);
if (bo) res = ~res + 1;
} const int N = 105, M = 1005, rqy = 1e9 + 7; int n, l, a[N], f[2][N][M][3], ans; int main()
{
read(n); read(l);
for (int i = 1; i <= n; i++) read(a[i]);
if (n == 1) return puts("1"), 0;
std::sort(a + 1, a + n + 1);
f[0][0][0][0] = 1; a[0] = a[1];
for (int i = 0; i < n; i++)
{
int op = i & 1;
for (int j = 0; j <= i + 1; j++)
for (int k = 0; k <= l; k++)
f[op ^ 1][j][k][0] = f[op ^ 1][j][k][1] = f[op ^ 1][j][k][2] = 0;
for (int j = 0; j <= i; j++)
for (int k = 0; k <= l; k++)
for (int h = 0; h < 3; h++)
{
if (!f[op][j][k][h]) continue;
int w = k + (a[i + 1] - a[i]) * (j * 2 - h), cf = f[op][j][k][h];
if (w > l) continue;
vf(j + 1, h) = (1ll * (j + 1 - h) * cf + vf(j + 1, h)) % rqy;
if (j) vf(j - 1, h) = (1ll * (j - 1) * cf + vf(j - 1, h)) % rqy;
vf(j, h) = (1ll * (j * 2 - h) * cf + vf(j, h)) % rqy;
if (h < 2)
{
if (j) vf(j, h + 1) = (1ll * (2 - h) * cf + vf(j, h + 1)) % rqy;
vf(j + 1, h + 1) = (1ll * (2 - h) * cf + vf(j + 1, h + 1)) % rqy;
}
}
}
for (int i = 0; i <= l; i++) ans = (ans + f[n & 1][1][i][2]) % rqy;
return std::cout << ans << std::endl, 0;
}

[LOJ#2743][DP]「JOI Open 2016」摩天大楼的更多相关文章

  1. [题解] [LOJ2743]「JOI Open 2016」摩天大楼

    题目大意 将 \(N\) 个互不相同的整数 \(A_1 , A_2 , ⋯ , A_N\) 任意排列成 \(B_1 , B_2 , ⋯ , B_N\) . 要求 \(∑^{N−1}_{i=1} |B_ ...

  2. 【LOJ】#3014. 「JOI 2019 Final」独特的城市(长链剖分)

    LOJ#3014. 「JOI 2019 Final」独特的城市(长链剖分) 显然我们画一条直径,容易发现被统计的只可能是直径某个距离较远的端点到这个点的路径上的值 用一个栈统计可以被统计的点,然后我们 ...

  3. LOJ#2351. 「JOI 2018 Final」毒蛇越狱

    LOJ#2351. 「JOI 2018 Final」毒蛇越狱 https://loj.ac/problem/2351 分析: 首先有\(2^{|?|}\)的暴力非常好做. 观察到\(min(|1|,| ...

  4. 「JOI 2017 Final」JOIOI 王国

    「JOI 2017 Final」JOIOI 王国 题目描述 题目译自 JOI 2017 Final T3「 JOIOI 王国 / The Kingdom of JOIOI」 JOIOI 王国是一个 H ...

  5. 「JOI 2015 Final」舞会

    「JOI 2015 Final」舞会 略微思考一下即可知该过程可以化为一棵树.(3个贵族中选择1个,即新建一个节点连向这3个贵族). 该树的结点个数为\(2n\). 考虑二分答案mid. 判定的是公主 ...

  6. 「JOI 2015 Final」分蛋糕 2

    「JOI 2015 Final」分蛋糕 2 题解 这道题让我想起了新年趣事之红包这道DP题,这道题和那道题推出来之后的做法是一样的. 我们可以定义dp[i][len][1] 表示从第i块逆时针数len ...

  7. 【题解】LOJ2759. 「JOI 2014 Final」飞天鼠(最短路)

    [题解]LOJ2759. 「JOI 2014 Final」飞天鼠(最短路) 考虑最终答案的构成,一定是由很多飞行+一些上升+一些下降构成. 由于在任何一个点上升或者下降代价是一样的,所以: 对于上升操 ...

  8. 「JOI 2014 Final」飞天鼠

    「JOI 2014 Final」飞天鼠 显然向上爬是没有必要的,除非会下降到地面以下,才提高到刚好为0. 到达一个点有两种情况:到达高度为0和不为0. 对于高度不为0的情况,显然花费的时间越少高度越高 ...

  9. 「JOI 2015 Final」城墙

    「JOI 2015 Final」城墙 复杂度默认\(m=n\) 暴力 对于点\((i,j)\),记录\(ld[i][j]=min(向下延伸的长度,向右延伸的长度)\),\(rd[i][j]=min(向 ...

随机推荐

  1. H3C 因特网域名结构树

  2. H3C端口状态迁移

  3. 应用九:Vue之国际化(vue-i18n)

    vue-i18n是一款针对Vue.js 的国际化插件,具体应用步骤如下: 一.安装插件 npm install vue-i18n --save 二.在main.js中引入插件 import VueI1 ...

  4. C# 从零开始写 SharpDx 应用 绘制基础图形

    本文告诉大家通过 SharpDx 画出简单的 2D 界面 本文属于 SharpDx 系列 博客,建议从头开始读 本文分为两步,第一步是初始化,第二步才是画界面 初始化 先创建 RenderForm 用 ...

  5. 2018-2-13-Visual-studio-C#-代码使用-NotNull

    title author date CreateTime categories Visual studio C# 代码使用 NotNull lindexi 2018-2-13 17:23:3 +080 ...

  6. JAVA兼职架构师

    在一些小企业或者公司人力不足的时候,经常会出现一个人干多个人的活.开发可能会干架构.测试.运维,一些小项目可能需要一个人完成.我把这些角色合并在一起称之为兼职架构师. 我用我的经历来说说兼职架构师的需 ...

  7. Android APP前后台状态切换

    getActivity().getApplication().registerActivityLifecycleCallbacks(new Application.ActivityLifecycleC ...

  8. vagrant在windows下的安装和配置(一)

    记录一下安装和配置过程中的一些坑步骤一分别下载vagrant和VirtualBox,我这里下载的是vagrant_1.9.1.msi 和 VirtualBox-5.1.14-112924-Win.ex ...

  9. 35.python之事件驱动模型

    转载:https://www.cnblogs.com/yuanchenqi/articles/5722574.html 事件驱动模型 上节的问题: 协程:遇到IO操作就切换. 但什么时候切回去呢?怎么 ...

  10. world 文档中表格旋转180°

    一个好朋友给我打电话,说是有个wps操作把他难住了,他常年跟wps 形影不离,你都搞不定,我都不怎么用.听完他说的以后,我才明白他要的效果是怎么样的,贴图来看: 其实像直接转化成这种效果没有办法,但是 ...