[LOJ#2743][DP]「JOI Open 2016」摩天大楼
DP 经典题
考虑从小到大把数加入排列内
如下图(\(A\) 已经经过排序):
我们考虑如上,在 \(i\) ( \(A_i\) )不断增大的过程中,维护上面直线 \(y=A_i\) 之下的部分的长度之和
于是我们定义 DP :\(f[i][j][k][h]\) 表示插入了前 \(i\) 个数,分成 \(j\) 段,\(y=A_i\) 之下的部分长度之和为 \(k\) ,并且选出了 \(k\) ( \(0/1/2\) )个边界(第 \(1\) 个或第 \(n\) 个)的方案数
注意这个 DP 中我们只需要保证每段是否在边界以及相邻两段之间有空位即可,不关心每段的实际位置
不难发现,从 \(f[i][j][k][h]\) 转移到 \(f[i+1]\) ,\(k\) 的增量是固定的,即对于每个段的两端,将直线从 \(y=A_i\) 移到 \(y=A_{i+1}\) 时每端都会多出 \(A_{i+1}-A_i\) 的长度(边界除外),于是 \(f[i][j][k][h]\) 转移到 \(f[i+1]\) 时 \(k\) 的增量为 \((A_{i+1}-A_i)\times(2j-h)\) ,设其为 \(w\) 。下面讨论几种情况进行转移:
(1)新建一段,这一段可以放在边界除外的任意 \(j+1\) 个空隙内:
- \[f[i+1][j+1][w][h]+=f[i][j][k][h]\times(j+1-h)
\] (2)合并两段:
- \[f[i+1][j-1][w][h]+=f[i][j][k][h]\times(j-1)
\] (3)放在其中一段的其中一端,不改变段数,只让该段长加 \(1\) :
- \[f[i+1][j][w][h]+=f[i][j][k][h]\times(2j-h)
\] (4)新建一段并钦定其为边界:
- \[f[i+1][j+1][w][h+1]+=f[i][j][k][h]\times(2-h)
\] (5)接在最左段(不能为边界)的左端并钦定为边界,或接在最右段(不能为边界)的最右端并钦定为边界:
- \[f[i+1][j][w][h+1]+=f[i][j][k][h]\times(2-h)
\] 答案为 \(\sum_{i=0}^Lf[n][1][i][2]\) ,复杂度 \(O(n^2L)\) ,可以将第一维滚动以优化空间
Code
#include <bits/stdc++.h>
#define vf(ii, jj) f[op ^ 1][ii][w][jj]
template <class T>
inline void read(T &res)
{
res = 0; bool bo = 0; char c;
while (((c = getchar()) < '0' || c > '9') && c != '-');
if (c == '-') bo = 1; else res = c - 48;
while ((c = getchar()) >= '0' && c <= '9')
res = (res << 3) + (res << 1) + (c - 48);
if (bo) res = ~res + 1;
}
const int N = 105, M = 1005, rqy = 1e9 + 7;
int n, l, a[N], f[2][N][M][3], ans;
int main()
{
read(n); read(l);
for (int i = 1; i <= n; i++) read(a[i]);
if (n == 1) return puts("1"), 0;
std::sort(a + 1, a + n + 1);
f[0][0][0][0] = 1; a[0] = a[1];
for (int i = 0; i < n; i++)
{
int op = i & 1;
for (int j = 0; j <= i + 1; j++)
for (int k = 0; k <= l; k++)
f[op ^ 1][j][k][0] = f[op ^ 1][j][k][1] = f[op ^ 1][j][k][2] = 0;
for (int j = 0; j <= i; j++)
for (int k = 0; k <= l; k++)
for (int h = 0; h < 3; h++)
{
if (!f[op][j][k][h]) continue;
int w = k + (a[i + 1] - a[i]) * (j * 2 - h), cf = f[op][j][k][h];
if (w > l) continue;
vf(j + 1, h) = (1ll * (j + 1 - h) * cf + vf(j + 1, h)) % rqy;
if (j) vf(j - 1, h) = (1ll * (j - 1) * cf + vf(j - 1, h)) % rqy;
vf(j, h) = (1ll * (j * 2 - h) * cf + vf(j, h)) % rqy;
if (h < 2)
{
if (j) vf(j, h + 1) = (1ll * (2 - h) * cf + vf(j, h + 1)) % rqy;
vf(j + 1, h + 1) = (1ll * (2 - h) * cf + vf(j + 1, h + 1)) % rqy;
}
}
}
for (int i = 0; i <= l; i++) ans = (ans + f[n & 1][1][i][2]) % rqy;
return std::cout << ans << std::endl, 0;
}
[LOJ#2743][DP]「JOI Open 2016」摩天大楼的更多相关文章
- [题解] [LOJ2743]「JOI Open 2016」摩天大楼
题目大意 将 \(N\) 个互不相同的整数 \(A_1 , A_2 , ⋯ , A_N\) 任意排列成 \(B_1 , B_2 , ⋯ , B_N\) . 要求 \(∑^{N−1}_{i=1} |B_ ...
- 【LOJ】#3014. 「JOI 2019 Final」独特的城市(长链剖分)
LOJ#3014. 「JOI 2019 Final」独特的城市(长链剖分) 显然我们画一条直径,容易发现被统计的只可能是直径某个距离较远的端点到这个点的路径上的值 用一个栈统计可以被统计的点,然后我们 ...
- LOJ#2351. 「JOI 2018 Final」毒蛇越狱
LOJ#2351. 「JOI 2018 Final」毒蛇越狱 https://loj.ac/problem/2351 分析: 首先有\(2^{|?|}\)的暴力非常好做. 观察到\(min(|1|,| ...
- 「JOI 2017 Final」JOIOI 王国
「JOI 2017 Final」JOIOI 王国 题目描述 题目译自 JOI 2017 Final T3「 JOIOI 王国 / The Kingdom of JOIOI」 JOIOI 王国是一个 H ...
- 「JOI 2015 Final」舞会
「JOI 2015 Final」舞会 略微思考一下即可知该过程可以化为一棵树.(3个贵族中选择1个,即新建一个节点连向这3个贵族). 该树的结点个数为\(2n\). 考虑二分答案mid. 判定的是公主 ...
- 「JOI 2015 Final」分蛋糕 2
「JOI 2015 Final」分蛋糕 2 题解 这道题让我想起了新年趣事之红包这道DP题,这道题和那道题推出来之后的做法是一样的. 我们可以定义dp[i][len][1] 表示从第i块逆时针数len ...
- 【题解】LOJ2759. 「JOI 2014 Final」飞天鼠(最短路)
[题解]LOJ2759. 「JOI 2014 Final」飞天鼠(最短路) 考虑最终答案的构成,一定是由很多飞行+一些上升+一些下降构成. 由于在任何一个点上升或者下降代价是一样的,所以: 对于上升操 ...
- 「JOI 2014 Final」飞天鼠
「JOI 2014 Final」飞天鼠 显然向上爬是没有必要的,除非会下降到地面以下,才提高到刚好为0. 到达一个点有两种情况:到达高度为0和不为0. 对于高度不为0的情况,显然花费的时间越少高度越高 ...
- 「JOI 2015 Final」城墙
「JOI 2015 Final」城墙 复杂度默认\(m=n\) 暴力 对于点\((i,j)\),记录\(ld[i][j]=min(向下延伸的长度,向右延伸的长度)\),\(rd[i][j]=min(向 ...
随机推荐
- H3C STP配置示例
- jQuery 工具类函数-浏览器信息
在jQuery中,通过$.browser对象可以获取浏览器的名称和版本信息,如$.browser.chrome为true,表示当前为Chrome浏览器,$.browser.mozilla为true,表 ...
- UVA - 10480 Sabotage (Dinic)
The regime of a small but wealthy dictatorship has been abruptly overthrown by an unexpected rebel-l ...
- HDU 6444 Neko's loop(单调队列)
Neko has a loop of size nn. The loop has a happy value aiai on the i−th(0≤i≤n−1)i−th(0≤i≤n−1) grid. ...
- k8s的持久化存储
本例使用nfs 创建pv [root@k8s-master data]# vi pv.yaml apiVersion: v1kind: PersistentVolumemetadata: name: ...
- Channel 9视频整理【4】
Eric ShangKuan 目前服務於台灣微軟,擔任技術傳教士 (Technical Evangelist) 一職,網路上常用的 ID 為 ericsk,對於各項開發技術如:Web.Mobile.A ...
- CachedRowSet 接口
Sun Microsystems 提供的 CachedRowSet 接口的参考实现是一个标准实现.开发人员可以按原样使用此实现.可以扩展它,也可以选择自己编写此接口的实现. CachedRowSet ...
- Struts2 类型转换(易百教程)
在HTTP请求中的一切都被视为一个String由协议.这包括数字,布尔值,整数,日期,小数和一切.每一件事情是一个字符串,将根据HTTP.然而,Struts类可以有任何数据类型的属性.Struts的自 ...
- 如何删除Word自动编号后文字和编号之间的空白距离
一.出现的现象:使用word进行自动编号之后,编号和其后的文字出现如下图所示的空白 二.如何解决问题 选中列表内容右键->调整列表缩进->选择“编号之后(W)"为不特别标注-&g ...
- Python上下文管理使用
import contextlib from queue import Queue @contextlib.contextmanager def myOpen(file): f = open(file ...