阅读理解两小时,手敲暴力思考5分钟。然后\(n^3\)就A了

暴力代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long #define ON_DEBUG #ifdef ON_DEBUG #define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin); #else #define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ; #endif struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std; const int N = 307; int dis[N][N], D[N];
int vis[N];
int main(){
//FileOpen();
int n, S;
io >> n >> S;
R(i,1,n){
R(j,1,n){
if(i != j)
dis[i][j] = 2147483647;
}
}
R(i,2,n){
int u, v, w;
io >> u >> v >> w;
dis[u][v] = dis[v][u] = w;
} int DIS = 0;
R(k,1,n){
R(i,1,n){
if(dis[i][k] == 2147483647) continue;
R(j,1,n){
if(dis[k][j] == 2147483647) continue;
dis[i][j] = Min(dis[i][j], dis[i][k] + dis[k][j]);
DIS = Max(DIS, dis[i][j]);
}
}
} R(i,1,n){
R(j,1,n){
if(dis[i][j] == DIS){
R(k,1,n){
if(dis[i][k] + dis[k][j] == dis[i][j]){
vis[k] = true;
}
}
}
}
} int ans = 2147483647;
R(i,1,n){
R(j,i,n){
if(vis[i] && vis[j] && dis[i][j] <= S){
R(xx,1,n) D[xx] = 2147483647;
R(k,1,n){
if(dis[i][k] + dis[k][j] == dis[i][j]){
R(l,1,n){
D[l] = Min(D[l], dis[k][l]);
}
}
} int maxx = 0;
R(k,1,n){
maxx = Max(maxx, D[k]);
}
ans = Min(ans, maxx);
}
}
} printf("%d", ans); return 0;
}

Luogu1099 树网的核 (暴力?,floyd?)(还未想正解,暴力就A了)的更多相关文章

  1. 树网的核[树 floyd]

    描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T ...

  2. POJ 3537 Crosses and Crosses(SG/还未想完全通的一道SG)

    题目链接 #include<iostream> #include<cstdio> #include<cstring> using namespace std; ]; ...

  3. 【BZOJ-4059】Non-boring sequences 线段树 + 扫描线 (正解暴力)

    4059: [Cerc2012]Non-boring sequences Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 440  Solved: 16 ...

  4. Cogs 97. [NOIP2007] 树网的核 Floyd

    题目: http://cojs.tk/cogs/problem/problem.php?pid=97 97. [NOIP2007] 树网的核 ★☆   输入文件:core.in   输出文件:core ...

  5. 5.19[bzoj树网的核]

    围观了final,SJTU还是飞了,泽民同志劲啊! 膜拜归膜拜...回来开题 bzoj1999树网的核 最近就喜欢给自己找切不动的题...QAQ ok.....昨天在家里做了一个下午+晚上 又困&am ...

  6. NOIP 2007树网的核

    题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并 ...

  7. NOIP2007 树网的核 && [BZOJ2282][Sdoi2011]消防

    NOIP2007 树网的核 树的直径的最长性是一个很有用的概念,可能对一些题都帮助. 树的直径给定一棵树,树中每条边都有一个权值,树中两点之间的距离定义为连接两点的路径边权之和.树中最远的两个节点之间 ...

  8. [BZOJ1999][codevs1167][Noip2007]Core树网的核

    [BZOJ1999][codevs1167][Noip2007]Core树网的核 试题描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T为树网(t ...

  9. noip2007 树网的核

    P1099 树网的核 112通过 221提交 题目提供者该用户不存在 标签动态规划树形结构2007NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 设T=(V, E, W) ...

随机推荐

  1. 造个海洋球池来学习物理引擎【Three.js系列】

    github地址:https://github.com/hua1995116/Fly-Three.js 大家好,我是秋风.继上一篇<Three.js系列:   游戏中的第一/三人称视角>今 ...

  2. SQLServer2008中的Merge

    SqlServer2008 +  中的 Merge Merge:  合并   融合 SqlServer2008 中的Merge 用于匹配两种表中的数据,根据源表和目标表中的数据的比较结果对目标表进行对 ...

  3. Java内存分析——JavaSE基础

    内存分析 堆:存放new的对象和数组,可以被所有线程共享,不会存放别的对象引用 栈 存放基本变量类型(会包含这个基本类型的具体数值) 引用对象的变量(会存放这个引用在堆里的具体地址) 方法区(属于堆的 ...

  4. @vue/cli3+配置build命令构建测试包&正式包

    上一篇博客介绍了vue-cli2.x配置build命令构建测试包和正式包,但现在前端开发vue项目大多数使用新版@vue/cli脚手架搭建vue项目(vue create project-name) ...

  5. 2021.03.20【NOIP提高B组】模拟 总结

    区间 DP 专场:愉快爆炸 T1 题目大意 有 \(n\) 个有颜色的块,连续 \(k\) 个相同颜色的就可以消掉 现在可以在任意位置插入任意颜色的方块,问最少插入多少个可以全部抵消 题解 先把连续的 ...

  6. docker引起服务器磁盘爆满

    服务器异常 又是开开心心打开我心爱的服务器一天: 吔!这是嘛啊?我的服务器域名访问不了了,一直转圈圈超时了,好,打开ssh远程看看,吔!!!还是访问不了,宕机了?怀着一颗憋大便的心情打开了阿里云控制面 ...

  7. SRE,了解一下?35+岁程序员新选择

    摘要:随着云业务的发展,今后会有越来越多的工程师深入到SRE领域. 本文分享自华为云社区<浅谈SRE角色认知>,作者: SRE确定性运维. 一.什么是SRE? SRE(Site Relia ...

  8. .NET6 开源之JSON 2 SQL (JORM框架)

    什么是JORM框架? 全称 :Json  Object Relational Mapping   ,它是通过JSON 对象 去实现数据库的一个关系映射 ,我理想中完整的JORM包含功能有 ·1.表权授 ...

  9. 谷歌浏览器控制台 f12怎么设置成中文/英文 切换方法,一定要看到最后!!!

    1.打开谷歌浏览器 2.右键选择检查或 f12 打开控制台 3.点击控制台右边的设置 4.中切英 选择偏好设置->语言=>English 5.英切中 6.选择中文 7.重启 8.切换中文成 ...

  10. python是什么?工作前景如何?怎么算有基础?爬数据违法嘛......

    随着python越来越火爆并在2021年10月,语言流行指数的编译器Tiobe将Python加冕为最受欢迎的编程语言,且置于Java.C和JavaScript之上,于是越来越多的人开始了解python ...