阅读理解两小时,手敲暴力思考5分钟。然后\(n^3\)就A了

暴力代码

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#define R(a,b,c) for(register int a = (b); a <= (c); ++ a)
#define nR(a,b,c) for(register int a = (b); a >= (c); -- a)
#define Max(a,b) ((a) > (b) ? (a) : (b))
#define Min(a,b) ((a) < (b) ? (a) : (b))
#define Fill(a,b) memset(a, b, sizeof(a))
#define Abs(a) ((a) < 0 ? -(a) : (a))
#define Swap(a,b) a^=b^=a^=b
#define ll long long #define ON_DEBUG #ifdef ON_DEBUG #define D_e_Line printf("\n\n----------\n\n")
#define D_e(x) cout << #x << " = " << x << endl
#define Pause() system("pause")
#define FileOpen() freopen("in.txt","r",stdin); #else #define D_e_Line ;
#define D_e(x) ;
#define Pause() ;
#define FileOpen() ; #endif struct ios{
template<typename ATP>ios& operator >> (ATP &x){
x = 0; int f = 1; char c;
for(c = getchar(); c < '0' || c > '9'; c = getchar()) if(c == '-') f = -1;
while(c >= '0' && c <= '9') x = x * 10 + (c ^ '0'), c = getchar();
x*= f;
return *this;
}
}io;
using namespace std; const int N = 307; int dis[N][N], D[N];
int vis[N];
int main(){
//FileOpen();
int n, S;
io >> n >> S;
R(i,1,n){
R(j,1,n){
if(i != j)
dis[i][j] = 2147483647;
}
}
R(i,2,n){
int u, v, w;
io >> u >> v >> w;
dis[u][v] = dis[v][u] = w;
} int DIS = 0;
R(k,1,n){
R(i,1,n){
if(dis[i][k] == 2147483647) continue;
R(j,1,n){
if(dis[k][j] == 2147483647) continue;
dis[i][j] = Min(dis[i][j], dis[i][k] + dis[k][j]);
DIS = Max(DIS, dis[i][j]);
}
}
} R(i,1,n){
R(j,1,n){
if(dis[i][j] == DIS){
R(k,1,n){
if(dis[i][k] + dis[k][j] == dis[i][j]){
vis[k] = true;
}
}
}
}
} int ans = 2147483647;
R(i,1,n){
R(j,i,n){
if(vis[i] && vis[j] && dis[i][j] <= S){
R(xx,1,n) D[xx] = 2147483647;
R(k,1,n){
if(dis[i][k] + dis[k][j] == dis[i][j]){
R(l,1,n){
D[l] = Min(D[l], dis[k][l]);
}
}
} int maxx = 0;
R(k,1,n){
maxx = Max(maxx, D[k]);
}
ans = Min(ans, maxx);
}
}
} printf("%d", ans); return 0;
}

Luogu1099 树网的核 (暴力?,floyd?)(还未想正解,暴力就A了)的更多相关文章

  1. 树网的核[树 floyd]

    描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并设T ...

  2. POJ 3537 Crosses and Crosses(SG/还未想完全通的一道SG)

    题目链接 #include<iostream> #include<cstdio> #include<cstring> using namespace std; ]; ...

  3. 【BZOJ-4059】Non-boring sequences 线段树 + 扫描线 (正解暴力)

    4059: [Cerc2012]Non-boring sequences Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 440  Solved: 16 ...

  4. Cogs 97. [NOIP2007] 树网的核 Floyd

    题目: http://cojs.tk/cogs/problem/problem.php?pid=97 97. [NOIP2007] 树网的核 ★☆   输入文件:core.in   输出文件:core ...

  5. 5.19[bzoj树网的核]

    围观了final,SJTU还是飞了,泽民同志劲啊! 膜拜归膜拜...回来开题 bzoj1999树网的核 最近就喜欢给自己找切不动的题...QAQ ok.....昨天在家里做了一个下午+晚上 又困&am ...

  6. NOIP 2007树网的核

    题目描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边到有正整数的权,我们称T为树网(treebetwork),其中V,E分别表示结点与边的集合,W表示各边长度的集合,并 ...

  7. NOIP2007 树网的核 && [BZOJ2282][Sdoi2011]消防

    NOIP2007 树网的核 树的直径的最长性是一个很有用的概念,可能对一些题都帮助. 树的直径给定一棵树,树中每条边都有一个权值,树中两点之间的距离定义为连接两点的路径边权之和.树中最远的两个节点之间 ...

  8. [BZOJ1999][codevs1167][Noip2007]Core树网的核

    [BZOJ1999][codevs1167][Noip2007]Core树网的核 试题描述 设T=(V, E, W) 是一个无圈且连通的无向图(也称为无根树),每条边带有正整数的权,我们称T为树网(t ...

  9. noip2007 树网的核

    P1099 树网的核 112通过 221提交 题目提供者该用户不存在 标签动态规划树形结构2007NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录   题目描述 设T=(V, E, W) ...

随机推荐

  1. springcloud 断路器

    https://www.jb51.net/article/138572.htm 参考资料: http://www.cnblogs.com/ulysses-you/p/7281662.html http ...

  2. Node.js连接MySQL数据库报错

    解决Node.js第一次连接MySQL数据库时出现[SELECT ERROR] - ER_NOT_SUPPORTED_AUTH_MODE: Client does not support authen ...

  3. 计算机网络 - HTTP和HTTPS的区别

    计算机网络 - HTTP和HTTPS的区别 http所有传输的内容都是明文,并且客户端和服务器端都无法验证对方的身份. https具有安全性的ssl加密传输协议,加密采用对称加密. https协议需要 ...

  4. GraphX 图计算实践之模式匹配抽取特定子图

    本文首发于 Nebula Graph Community 公众号 前言 Nebula Graph 本身提供了高性能的 OLTP 查询可以较好地实现各种实时的查询场景,同时它也提供了基于 Spark G ...

  5. 【zigbee无线通信模块步步详解】ZigBee3.0模块建立远程网络控制方法

    本文以路灯控制应用为例,简述ZigBee3.0模块使用流程. 一.建立网络 1.通过USB转串口模块将出厂的ZigBee自组网模块连接,打开上位机软件"E180-ZG120A-Setting ...

  6. 我的 Java 学习&面试网站又又又升级了!

    晚上好,我是 Guide. 距离上次介绍 JavaGuide 新版在线阅读网站已经过去 7 个多月了(相关阅读:官宣!我升级了!!!),这 7 个多月里不论是 JavaGuide 的内容,还是 Jav ...

  7. Vue3.0系列——「vue3.0性能是如何变快的?」

    前言 先学习vue2.x,很多2.x内容依然保留: 先学习TypeScript,vue3.0是用TS重写的,想知其然知其所以然必须学习TS. 为什么学习vue3.0? 性能比vue2.x快1.2-2倍 ...

  8. Docker组成原理

    目录 Docker引擎 OCI容器标准 镜像 启动流程 本文是阅读<深入浅出Docker>的相关学习笔记 起初简单的以为Docker和容器是一种东西,后来才发现Docker是实现了Linu ...

  9. 一个bug肝一周...忍不住提了issue

    导航 Socket.IO是什么 Socket.IO的应用场景 为什么选socket.io-client-java 实战案例 参考 本文首发于智客工坊-<socket.io客户端向webserve ...

  10. 抓包整理外篇fiddler———— 会话栏与过滤器[二]

    前言 简单介绍一下会话栏和过滤器 正文 在抓包的时候这两个可以说是必用吧. 会话栏: 会话栏我这里介绍根据左边部分和右边部分. 左边部分是一些图标,有些人发现有个习惯,不习惯看图标. 其实说白了,我们 ...