Boosting the Performance of CDCL-Based SAT Solvers by Exploiting Backbones and Backdoors

布尔结构措施

本研究考虑的措施包括与主干和后门相关的措施: 主干大小、主干频率和后门大小。

 

当前SAT主要关键技术及其相关文献——参见下面这段叙述。

The annual SAT competitions have become an essential event for the distribution of SAT benchmarks and the development of new SAT-solving methods [5]. Sequential SAT solvers compete mainly in three categories: industrial, crafted, and random tracks. The SAT competitions have demonstrated how difficult it is for SAT solvers to perform well across all categories. Results show that conflict-driven clause-learning (CDCL) SAT solvers were most performant for solving industrial and crafted SAT benchmarks, whereas look-ahead and Stochastic Local Search (SLS)-based SAT solvers have dominated the random category [5]. Modern implementations of CDCL SAT solvers employ a lot of heuristics. Some of them can be considered baseline, such as the Variable State Independent Decaying Sum (VSIDS) [6], restarts [7], and Literal Block Distance (LBD) [8]. Several others were incorporated recently, including: Learnt Clause Minimization (LCM) [9], Distance (Dist) heuristic [10], Chronological Backtracking (ChronoBT) [11], duplicate learnts heuristic [12], Conflict History-Based (CHB) heuristic [13], Learning Rate-based Branching (LRB) heuristic [14], and the SLS component [15].

[5] SAT Competitions. 2002. Available online: http://www.satcompetition.org (accessed on 19 November 2019).

[6] Moskewicz, M.W.; Madigan, C.F.; Zhao, Y.; Zhang, L.; Malik, S. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232), Las Vegas, NV, USA, 22 June 2001; pp. 530–535. [Google Scholar] [CrossRef]

[7] Luby, M.; Sinclair, A.; Zuckerman, D. Optimal speedup of Las Vegas algorithms. Inf. Process. Lett. 1993, 47, 173–180. [Google Scholar] [CrossRef]

[8] Audemard, G.; Simon, L. Predicting Learnt Clauses Quality in Modern SAT Solvers. In Proceedings of the 21st International Jont Conference on Artifical Intelligence, Pasadena, CA, USA, 11–17 July 2009; IJCAI’09. pp. 399–404. [Google Scholar]

[9] Luo, M.; Li, C.M.; Xiao, F.; Manyà, F.; Lü, Z. An Effective Learnt Clause Minimization Approach for CDCL SAT Solvers. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, Melbourne, Australia 19–25 August 2017; pp. 703–711. [Google Scholar] [CrossRef]

[10] Xiao, F.; Luo, M.; Li, C.M.; Manyà, F.; Lü, Z. MapleLRB LCM, Maple LCM, Maple LCM Dist, MapleLRB LCMoccRestart and Glucose-3.0+width in SAT Competition 2017. In Proceedings of the SAT Competition 2017: Solver and Benchmark Descriptions, Melbourne, Australia, 28 August–1 September 2017; Volume B-2017-1, pp. 25–26. [Google Scholar]

[11] Nadel, A.; Ryvchin, V. Chronological Backtracking. In Proceedings of the Theory and Applications of Satisfiability Testing—SAT 2018, Oxford, UK, 9–12 July 2018; Beyersdorff, O., Wintersteiger, C.M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 111–121. [Google Scholar]

[12] Kochemazov, S.; Zaikin, O.; Semenov, A.A.; Kondratiev, V. Speeding Up CDCL Inference with Duplicate Learnt Clauses. In Proceedings of the ECAI 2020—24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 29 August–8 September 2020; Giacomo, G.D., Catalá, A., Dilkina, B., Milano, M., Barro, S., Bugarín, A., Lang, J., Eds.; IOS Press: Shepherdsville, KY, USA, 2020; Volume 325, pp. 339–346. [Google Scholar] [CrossRef]

[13] Liang, J.H.; Ganesh, V.; Poupart, P.; Czarnecki, K. Exponential Recency Weighted Average Branching Heuristic for SAT Solvers. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; AAAI’16. pp. 3434–3440. [Google Scholar]

[14] Liang, J.H.; Ganesh, V.; Poupart, P.; Czarnecki, K. Learning Rate Based Branching Heuristic for SAT Solvers. In Proceedings of the Theory and Applications of Satisfiability Testing—SAT 2016—19th International Conference, Bordeaux, France, 5–8 July 2016; Creignou, N., Berre, D.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9710, pp. 123–140. [Google Scholar] [CrossRef]

[15] Zhang, X.; Cai, S. Relaxed Backtracking with Rephasing. In Proceedings of the SAT Competition 2020, Alghero, Italy, 3–10 July 2020; Solver and Benchmark Descriptions. University of Helsinki, Department of Computer Science: Helsinki, Finland, 2020; Volume B-2020-1, pp. 15–16. [Google Scholar]

The results of the SAT competitions have led researchers to conclude that (1) industrial, crafted, and random SAT instances have distinct structures, and (2) SAT-solving methods could exploit such structures.

   
  我们对主干和后门提出了三种新的相关措施:主干频率、主干覆盖率和后门覆盖率(读者可参阅附录A,其中从2002-2020年SAT竞赛中提取的工业、手工和随机基准实例的主干和后门相关措施的证据进行了调查。
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

文献阅读笔记——Boosting the Performance of CDCL-Based SAT Solvers by Exploiting Backbones and Backdoors的更多相关文章

  1. 文献阅读笔记——group sparsity and geometry constrained dictionary

    周五实验室有同学报告了ICCV2013的一篇论文group sparsity and geometry constrained dictionary learning for action recog ...

  2. 人体姿势识别,Convolutional pose machines文献阅读笔记。

    开源实现 https://github.com/shihenw/convolutional-pose-machines-release(caffe版本) https://github.com/psyc ...

  3. 个性探测综述阅读笔记——Recent trends in deep learning based personality detection

    目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...

  4. [阅读笔记]Zhang Y. 3D Information Extraction Based on GPU.2010.

    1.立体视觉基础 深度定义为物体间的距离 视差定义为同一点在左图(reference image) 和右图( target image) 中的x坐标差. 根据左图中每个点的视差得到的灰度图称为视差图. ...

  5. CI框架源代码阅读笔记3 全局函数Common.php

    从本篇開始.将深入CI框架的内部.一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说.全局函数具有最高的载入优先权.因此大多数的框架中BootStrap ...

  6. Mina源码阅读笔记(一)-整体解读

    今天的这一节,将从整体上对mina的源代码进行把握,网上已经有好多关于mina源码的阅读笔记,但好多都是列举了一下每个接口或者类的方法.我倒是想从mina源码的结构和功能上对这个框架进行剖析.源码的阅 ...

  7. 《Graph Neural Networks: A Review of Methods and Applications》阅读笔记

    本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习 ...

  8. Nature/Science 论文阅读笔记

    Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science l ...

  9. [系统重装日志1]快速迁移/恢复Mendeley的文献和笔记

    一时手贱把原先系统的EFI分区给删了,按照网上的教程还没有恢复成功,无奈之下只能重装系统,想想这么多环境和配置真是酸爽. 身为一个伪科研工作者,首先想到的是自己的文献和阅读笔记.我所使用的文献管理工具 ...

  10. 阅读笔记 1 火球 UML大战需求分析

    伴随着七天国庆的结束,紧张的学习生活也开始了,首先声明,阅读笔记随着我不断地阅读进度会慢慢更新,而不是一次性的写完,所以会重复的编辑.对于我选的这本   <火球 UML大战需求分析>,首先 ...

随机推荐

  1. Java基础__02.数据类型

    Java中的数据类型 Java是一种强类型的语言,所有的变量都必须要先定义才能使用. Java中的数据类型分为 基本数据类型和引用数据类型. 1.基本数据类型:(8种) 数值类型 整数类型 byte: ...

  2. python获取当前运行函数名

    两种方式: #!/usr/bin/env python3#coding:utf-8 import sys, inspectdef test_a(): print('func name: ', sys. ...

  3. mysql掉电后重启失败问题

    报错 2022-12-07T01:41:02.844533Z 0 [ERROR] InnoDB: Ignoring the redo log due to missing MLOG_CHECKPOIN ...

  4. go语言web框架-如何使用gin教程+react实现web项目

    go-web+ react实践项目 前端使用react 搭建,从webpack搭建开始写,后端是学习go语言过程中的实践,由于之前没有实际的后端web经验,所以是自己一点一点摸索出来的.有错漏还望指正 ...

  5. Python学习笔记组织文件之将美国风格日期的文件改名为欧洲风格的日期

    随笔记录方便自己和同路人查阅. #------------------------------------------------我是可耻的分割线--------------------------- ...

  6. gin面试题

    1.gin绑定前端提交的数据到结构体 json,shouldbindjson,postform,query拿到get方法或者路由拼接这些 2.gin框架中间件多个执行顺序 3.中间件实现原理 4.设计 ...

  7. PyMySQL删除

    title: PyMySQL删除 author: 杨晓东 permalink: PyMySQL删除 date: 2021-10-02 11:27:04 categories: - 投篮 tags: - ...

  8. 解决idea不能自动下载maven配置文件pom.xml下的jar包依赖的问题

    表现:无法下载pom配置文件中的依赖包,或只能下载少数包,各项配置都正确的情况 理由未知: 百度了很长一段时间,网上给出比较精准的解决之一是 setting>>maven>>去 ...

  9. docker打包nginx

    nginx镜像  localtime为/etc/localtime文件 给容器限定日志打印时间为北京时间 FROM nginx:stable-alpine MAINTAINER geyanan gey ...

  10. Swift中 堆(heap)和栈(stack)的区别

    1.内存空间分为堆空间和栈空间 2.堆->引用类型(对象.函数.闭包)  栈->值类型(结构体.枚举.元组) 3.值类型赋值->深拷贝  引用类型赋值->浅拷贝 let a = ...