Boosting the Performance of CDCL-Based SAT Solvers by Exploiting Backbones and Backdoors

布尔结构措施

本研究考虑的措施包括与主干和后门相关的措施: 主干大小、主干频率和后门大小。

 

当前SAT主要关键技术及其相关文献——参见下面这段叙述。

The annual SAT competitions have become an essential event for the distribution of SAT benchmarks and the development of new SAT-solving methods [5]. Sequential SAT solvers compete mainly in three categories: industrial, crafted, and random tracks. The SAT competitions have demonstrated how difficult it is for SAT solvers to perform well across all categories. Results show that conflict-driven clause-learning (CDCL) SAT solvers were most performant for solving industrial and crafted SAT benchmarks, whereas look-ahead and Stochastic Local Search (SLS)-based SAT solvers have dominated the random category [5]. Modern implementations of CDCL SAT solvers employ a lot of heuristics. Some of them can be considered baseline, such as the Variable State Independent Decaying Sum (VSIDS) [6], restarts [7], and Literal Block Distance (LBD) [8]. Several others were incorporated recently, including: Learnt Clause Minimization (LCM) [9], Distance (Dist) heuristic [10], Chronological Backtracking (ChronoBT) [11], duplicate learnts heuristic [12], Conflict History-Based (CHB) heuristic [13], Learning Rate-based Branching (LRB) heuristic [14], and the SLS component [15].

[5] SAT Competitions. 2002. Available online: http://www.satcompetition.org (accessed on 19 November 2019).

[6] Moskewicz, M.W.; Madigan, C.F.; Zhao, Y.; Zhang, L.; Malik, S. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232), Las Vegas, NV, USA, 22 June 2001; pp. 530–535. [Google Scholar] [CrossRef]

[7] Luby, M.; Sinclair, A.; Zuckerman, D. Optimal speedup of Las Vegas algorithms. Inf. Process. Lett. 1993, 47, 173–180. [Google Scholar] [CrossRef]

[8] Audemard, G.; Simon, L. Predicting Learnt Clauses Quality in Modern SAT Solvers. In Proceedings of the 21st International Jont Conference on Artifical Intelligence, Pasadena, CA, USA, 11–17 July 2009; IJCAI’09. pp. 399–404. [Google Scholar]

[9] Luo, M.; Li, C.M.; Xiao, F.; Manyà, F.; Lü, Z. An Effective Learnt Clause Minimization Approach for CDCL SAT Solvers. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, Melbourne, Australia 19–25 August 2017; pp. 703–711. [Google Scholar] [CrossRef]

[10] Xiao, F.; Luo, M.; Li, C.M.; Manyà, F.; Lü, Z. MapleLRB LCM, Maple LCM, Maple LCM Dist, MapleLRB LCMoccRestart and Glucose-3.0+width in SAT Competition 2017. In Proceedings of the SAT Competition 2017: Solver and Benchmark Descriptions, Melbourne, Australia, 28 August–1 September 2017; Volume B-2017-1, pp. 25–26. [Google Scholar]

[11] Nadel, A.; Ryvchin, V. Chronological Backtracking. In Proceedings of the Theory and Applications of Satisfiability Testing—SAT 2018, Oxford, UK, 9–12 July 2018; Beyersdorff, O., Wintersteiger, C.M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 111–121. [Google Scholar]

[12] Kochemazov, S.; Zaikin, O.; Semenov, A.A.; Kondratiev, V. Speeding Up CDCL Inference with Duplicate Learnt Clauses. In Proceedings of the ECAI 2020—24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 29 August–8 September 2020; Giacomo, G.D., Catalá, A., Dilkina, B., Milano, M., Barro, S., Bugarín, A., Lang, J., Eds.; IOS Press: Shepherdsville, KY, USA, 2020; Volume 325, pp. 339–346. [Google Scholar] [CrossRef]

[13] Liang, J.H.; Ganesh, V.; Poupart, P.; Czarnecki, K. Exponential Recency Weighted Average Branching Heuristic for SAT Solvers. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; AAAI’16. pp. 3434–3440. [Google Scholar]

[14] Liang, J.H.; Ganesh, V.; Poupart, P.; Czarnecki, K. Learning Rate Based Branching Heuristic for SAT Solvers. In Proceedings of the Theory and Applications of Satisfiability Testing—SAT 2016—19th International Conference, Bordeaux, France, 5–8 July 2016; Creignou, N., Berre, D.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9710, pp. 123–140. [Google Scholar] [CrossRef]

[15] Zhang, X.; Cai, S. Relaxed Backtracking with Rephasing. In Proceedings of the SAT Competition 2020, Alghero, Italy, 3–10 July 2020; Solver and Benchmark Descriptions. University of Helsinki, Department of Computer Science: Helsinki, Finland, 2020; Volume B-2020-1, pp. 15–16. [Google Scholar]

The results of the SAT competitions have led researchers to conclude that (1) industrial, crafted, and random SAT instances have distinct structures, and (2) SAT-solving methods could exploit such structures.

   
  我们对主干和后门提出了三种新的相关措施:主干频率、主干覆盖率和后门覆盖率(读者可参阅附录A,其中从2002-2020年SAT竞赛中提取的工业、手工和随机基准实例的主干和后门相关措施的证据进行了调查。
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

文献阅读笔记——Boosting the Performance of CDCL-Based SAT Solvers by Exploiting Backbones and Backdoors的更多相关文章

  1. 文献阅读笔记——group sparsity and geometry constrained dictionary

    周五实验室有同学报告了ICCV2013的一篇论文group sparsity and geometry constrained dictionary learning for action recog ...

  2. 人体姿势识别,Convolutional pose machines文献阅读笔记。

    开源实现 https://github.com/shihenw/convolutional-pose-machines-release(caffe版本) https://github.com/psyc ...

  3. 个性探测综述阅读笔记——Recent trends in deep learning based personality detection

    目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...

  4. [阅读笔记]Zhang Y. 3D Information Extraction Based on GPU.2010.

    1.立体视觉基础 深度定义为物体间的距离 视差定义为同一点在左图(reference image) 和右图( target image) 中的x坐标差. 根据左图中每个点的视差得到的灰度图称为视差图. ...

  5. CI框架源代码阅读笔记3 全局函数Common.php

    从本篇開始.将深入CI框架的内部.一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说.全局函数具有最高的载入优先权.因此大多数的框架中BootStrap ...

  6. Mina源码阅读笔记(一)-整体解读

    今天的这一节,将从整体上对mina的源代码进行把握,网上已经有好多关于mina源码的阅读笔记,但好多都是列举了一下每个接口或者类的方法.我倒是想从mina源码的结构和功能上对这个框架进行剖析.源码的阅 ...

  7. 《Graph Neural Networks: A Review of Methods and Applications》阅读笔记

    本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习 ...

  8. Nature/Science 论文阅读笔记

    Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science l ...

  9. [系统重装日志1]快速迁移/恢复Mendeley的文献和笔记

    一时手贱把原先系统的EFI分区给删了,按照网上的教程还没有恢复成功,无奈之下只能重装系统,想想这么多环境和配置真是酸爽. 身为一个伪科研工作者,首先想到的是自己的文献和阅读笔记.我所使用的文献管理工具 ...

  10. 阅读笔记 1 火球 UML大战需求分析

    伴随着七天国庆的结束,紧张的学习生活也开始了,首先声明,阅读笔记随着我不断地阅读进度会慢慢更新,而不是一次性的写完,所以会重复的编辑.对于我选的这本   <火球 UML大战需求分析>,首先 ...

随机推荐

  1. 删除 gnome自带的Videos软件

    gnome3自带的Videos粗看感觉听简洁挺流畅的,可是细看不仅电影中文名乱码显示还搞得字幕慢半拍,这一点完全不能忍,太难受了. 还是Vlc牛.而且Videos在应用商店不能卸载,命令行搜索已安装软 ...

  2. “adb”不是内部或外部命令——解决方案

    在AS(Android Studio简称AS)app真机测试中adb可以轻松找到安卓设备,ADB全称Android Debug Bridge,用于Android设备进行交互,也可以这样理解ADB是An ...

  3. 关于iptables的一些知识

    关闭firewalld, 启用iptables:systemctl stop firewalld  && systemctl disable firewalld  # 关闭firewa ...

  4. python手动安装包办法

    首先去官网找知己需要的包,我这是以自己安装为例 先找需要安装的包然后看箭头准备下载 我这里选择的是tar压缩格式的点一下箭头指的地方会弹出下载按钮,之后下载即可 找到自己安装的python文件所在的位 ...

  5. java 守护线程的关闭

    在进程内所有用户线程 全部消亡后,如果 守护线程仍在执行 ( 注意: 守护线程并不是一直运行中,守护线程中的代码执行完毕,则守护线程自然消亡. ),则会被强制消亡.

  6. vite vue插件打包配置

    import { defineConfig, UserConfigExport, ConfigEnv } from "vite"; import externalGlobals f ...

  7. fastadmin打包插件

    <?php namespace app\command; use think\console\Command; use think\console\Input; use think\consol ...

  8. Django和DRF的区别

    Django和DRF的区别 一.Django REST Framwork 和 Django 1.两者的概念: Django REST Framwork: 将数据库的东西通过ORM的映射取出来,通过vi ...

  9. 2019-2020-1 20199318《Linux内核原理与分析》第十一周作业

    <Linux内核原理与分析> 第十一周作业 一.预备知识 什么是ShellShock? Shellshock,又称Bashdoor,是在Unix中广泛使用的Bash shell中的一个安全 ...

  10. 面试视频知识点整理1-12(渲染机制,js运行机制,页面性能,错误监控)

    技巧(赞美面试官研究的比较深) 1.渲染机制 什么是DOCTYPE及作用? DTD(文档类型定义)是一系列的语法规则,用于定义文件类型.浏览器会根据它来判断文档类型,决定使用何种协议来解析以及切换浏览 ...