文献阅读笔记——Boosting the Performance of CDCL-Based SAT Solvers by Exploiting Backbones and Backdoors
Boosting the Performance of CDCL-Based SAT Solvers by Exploiting Backbones and Backdoors
布尔结构措施
本研究考虑的措施包括与主干和后门相关的措施: 主干大小、主干频率和后门大小。
|
当前SAT主要关键技术及其相关文献——参见下面这段叙述。 The annual SAT competitions have become an essential event for the distribution of SAT benchmarks and the development of new SAT-solving methods [5]. Sequential SAT solvers compete mainly in three categories: industrial, crafted, and random tracks. The SAT competitions have demonstrated how difficult it is for SAT solvers to perform well across all categories. Results show that conflict-driven clause-learning (CDCL) SAT solvers were most performant for solving industrial and crafted SAT benchmarks, whereas look-ahead and Stochastic Local Search (SLS)-based SAT solvers have dominated the random category [5]. Modern implementations of CDCL SAT solvers employ a lot of heuristics. Some of them can be considered baseline, such as the Variable State Independent Decaying Sum (VSIDS) [6], restarts [7], and Literal Block Distance (LBD) [8]. Several others were incorporated recently, including: Learnt Clause Minimization (LCM) [9], Distance (Dist) heuristic [10], Chronological Backtracking (ChronoBT) [11], duplicate learnts heuristic [12], Conflict History-Based (CHB) heuristic [13], Learning Rate-based Branching (LRB) heuristic [14], and the SLS component [15].
[5] SAT Competitions. 2002. Available online: http://www.satcompetition.org (accessed on 19 November 2019). [6] Moskewicz, M.W.; Madigan, C.F.; Zhao, Y.; Zhang, L.; Malik, S. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232), Las Vegas, NV, USA, 22 June 2001; pp. 530–535. [Google Scholar] [CrossRef] [7] Luby, M.; Sinclair, A.; Zuckerman, D. Optimal speedup of Las Vegas algorithms. Inf. Process. Lett. 1993, 47, 173–180. [Google Scholar] [CrossRef] [8] Audemard, G.; Simon, L. Predicting Learnt Clauses Quality in Modern SAT Solvers. In Proceedings of the 21st International Jont Conference on Artifical Intelligence, Pasadena, CA, USA, 11–17 July 2009; IJCAI’09. pp. 399–404. [Google Scholar] [9] Luo, M.; Li, C.M.; Xiao, F.; Manyà, F.; Lü, Z. An Effective Learnt Clause Minimization Approach for CDCL SAT Solvers. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, Melbourne, Australia 19–25 August 2017; pp. 703–711. [Google Scholar] [CrossRef] [10] Xiao, F.; Luo, M.; Li, C.M.; Manyà, F.; Lü, Z. MapleLRB LCM, Maple LCM, Maple LCM Dist, MapleLRB LCMoccRestart and Glucose-3.0+width in SAT Competition 2017. In Proceedings of the SAT Competition 2017: Solver and Benchmark Descriptions, Melbourne, Australia, 28 August–1 September 2017; Volume B-2017-1, pp. 25–26. [Google Scholar] [11] Nadel, A.; Ryvchin, V. Chronological Backtracking. In Proceedings of the Theory and Applications of Satisfiability Testing—SAT 2018, Oxford, UK, 9–12 July 2018; Beyersdorff, O., Wintersteiger, C.M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 111–121. [Google Scholar] [12] Kochemazov, S.; Zaikin, O.; Semenov, A.A.; Kondratiev, V. Speeding Up CDCL Inference with Duplicate Learnt Clauses. In Proceedings of the ECAI 2020—24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 29 August–8 September 2020; Giacomo, G.D., Catalá, A., Dilkina, B., Milano, M., Barro, S., Bugarín, A., Lang, J., Eds.; IOS Press: Shepherdsville, KY, USA, 2020; Volume 325, pp. 339–346. [Google Scholar] [CrossRef] [13] Liang, J.H.; Ganesh, V.; Poupart, P.; Czarnecki, K. Exponential Recency Weighted Average Branching Heuristic for SAT Solvers. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; AAAI’16. pp. 3434–3440. [Google Scholar] [14] Liang, J.H.; Ganesh, V.; Poupart, P.; Czarnecki, K. Learning Rate Based Branching Heuristic for SAT Solvers. In Proceedings of the Theory and Applications of Satisfiability Testing—SAT 2016—19th International Conference, Bordeaux, France, 5–8 July 2016; Creignou, N., Berre, D.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9710, pp. 123–140. [Google Scholar] [CrossRef] [15] Zhang, X.; Cai, S. Relaxed Backtracking with Rephasing. In Proceedings of the SAT Competition 2020, Alghero, Italy, 3–10 July 2020; Solver and Benchmark Descriptions. University of Helsinki, Department of Computer Science: Helsinki, Finland, 2020; Volume B-2020-1, pp. 15–16. [Google Scholar] The results of the SAT competitions have led researchers to conclude that (1) industrial, crafted, and random SAT instances have distinct structures, and (2) SAT-solving methods could exploit such structures. |
|
| 我们对主干和后门提出了三种新的相关措施:主干频率、主干覆盖率和后门覆盖率(读者可参阅附录A,其中从2002-2020年SAT竞赛中提取的工业、手工和随机基准实例的主干和后门相关措施的证据进行了调查。 | |
文献阅读笔记——Boosting the Performance of CDCL-Based SAT Solvers by Exploiting Backbones and Backdoors的更多相关文章
- 文献阅读笔记——group sparsity and geometry constrained dictionary
周五实验室有同学报告了ICCV2013的一篇论文group sparsity and geometry constrained dictionary learning for action recog ...
- 人体姿势识别,Convolutional pose machines文献阅读笔记。
开源实现 https://github.com/shihenw/convolutional-pose-machines-release(caffe版本) https://github.com/psyc ...
- 个性探测综述阅读笔记——Recent trends in deep learning based personality detection
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...
- [阅读笔记]Zhang Y. 3D Information Extraction Based on GPU.2010.
1.立体视觉基础 深度定义为物体间的距离 视差定义为同一点在左图(reference image) 和右图( target image) 中的x坐标差. 根据左图中每个点的视差得到的灰度图称为视差图. ...
- CI框架源代码阅读笔记3 全局函数Common.php
从本篇開始.将深入CI框架的内部.一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说.全局函数具有最高的载入优先权.因此大多数的框架中BootStrap ...
- Mina源码阅读笔记(一)-整体解读
今天的这一节,将从整体上对mina的源代码进行把握,网上已经有好多关于mina源码的阅读笔记,但好多都是列举了一下每个接口或者类的方法.我倒是想从mina源码的结构和功能上对这个框架进行剖析.源码的阅 ...
- 《Graph Neural Networks: A Review of Methods and Applications》阅读笔记
本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习 ...
- Nature/Science 论文阅读笔记
Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science l ...
- [系统重装日志1]快速迁移/恢复Mendeley的文献和笔记
一时手贱把原先系统的EFI分区给删了,按照网上的教程还没有恢复成功,无奈之下只能重装系统,想想这么多环境和配置真是酸爽. 身为一个伪科研工作者,首先想到的是自己的文献和阅读笔记.我所使用的文献管理工具 ...
- 阅读笔记 1 火球 UML大战需求分析
伴随着七天国庆的结束,紧张的学习生活也开始了,首先声明,阅读笔记随着我不断地阅读进度会慢慢更新,而不是一次性的写完,所以会重复的编辑.对于我选的这本 <火球 UML大战需求分析>,首先 ...
随机推荐
- WPF BackSpace 回退到上一个页面
在Wpf程序中,有时候点击到某些控件后,再按下[BackSpace]键,画面会回到上一个 TextBox可能自己处理了,所以没有这一个现象. 解决方案是: 在App.xaml.cs 的 Initial ...
- MYSQL表操作(中篇)--数据类型
1.数据类型 数值类型 1.整数类型 整数类型:TINYINT,SMALLINT,MEDIUMINT,INT,BIGINT 作用:存储年龄,等级,id,各种号码等 默认是有符号的 int[(m)][u ...
- laravel关联查询
1.创建表: -- 创建学生表 CREATE TABLE `student` ( `id` int(11) NOT NULL AUTO_INCREMENT, `name` varchar(255) C ...
- nginx配置文件过大导致起不来
更改src/core/ngx_conf_file.c,默认只有4k,将下面值改大重新编译
- composer 操作
composer list 显示所有命令 composer show 显示所有包信息 composer install 在 composer.json 配置中添加依赖库之后运行此命令安装 compos ...
- docker的生命周期
所有博客仅用于自己学习记录,如有侵权请联系删除,文章来源于公开视频资料,如有需要请移步这里:https://www.bilibili.com/video/BV1o14y1w7b8?p=11&v ...
- asp.net core 解决用户上传文件提示 System.UnauthorizedAccessException: Access to the path 'C:\Windows\TEMP\ASPNETCORE_e65c14f7-e337-493c-90ac-d49a48db7187.tmp' is denied.
今天发布项目到服务器 上传文件突然提示 System.UnauthorizedAccessException: Access to the path 'C:\Windows\TEMP\ASPNETCO ...
- springBoot中对mongodb添加2dsphere位置索引
项目需求:最近有个需求,就是要根据坐标位置找出附近的车辆(车辆有对应的坐标).然后翻了翻百度,cv流一顿操作之后,大概整理出来了一段代码如下 //根据当前位置坐标,找出附近*米内的所有车辆BasicD ...
- .net基础—委托和事件
委托 委托是一种引用类型,表示对具有特定参数列表和返回类型的方法的引用. 在实例化委托时,可以将其实例与任何具有兼容签名和返回类型的方法相关联. 可以通过委托实例调用方法.可以将任何可访问类或结构中与 ...
- Could not resolve dependency:peer swiper@“^5.2.0“ from vue-awesome-swiper@4.1.1
在安装vue-awesome-swiper时报错: Could not resolve dependency:peer swiper@"^5.2.0" from vue-aweso ...
