Boosting the Performance of CDCL-Based SAT Solvers by Exploiting Backbones and Backdoors

布尔结构措施

本研究考虑的措施包括与主干和后门相关的措施: 主干大小、主干频率和后门大小。

 

当前SAT主要关键技术及其相关文献——参见下面这段叙述。

The annual SAT competitions have become an essential event for the distribution of SAT benchmarks and the development of new SAT-solving methods [5]. Sequential SAT solvers compete mainly in three categories: industrial, crafted, and random tracks. The SAT competitions have demonstrated how difficult it is for SAT solvers to perform well across all categories. Results show that conflict-driven clause-learning (CDCL) SAT solvers were most performant for solving industrial and crafted SAT benchmarks, whereas look-ahead and Stochastic Local Search (SLS)-based SAT solvers have dominated the random category [5]. Modern implementations of CDCL SAT solvers employ a lot of heuristics. Some of them can be considered baseline, such as the Variable State Independent Decaying Sum (VSIDS) [6], restarts [7], and Literal Block Distance (LBD) [8]. Several others were incorporated recently, including: Learnt Clause Minimization (LCM) [9], Distance (Dist) heuristic [10], Chronological Backtracking (ChronoBT) [11], duplicate learnts heuristic [12], Conflict History-Based (CHB) heuristic [13], Learning Rate-based Branching (LRB) heuristic [14], and the SLS component [15].

[5] SAT Competitions. 2002. Available online: http://www.satcompetition.org (accessed on 19 November 2019).

[6] Moskewicz, M.W.; Madigan, C.F.; Zhao, Y.; Zhang, L.; Malik, S. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232), Las Vegas, NV, USA, 22 June 2001; pp. 530–535. [Google Scholar] [CrossRef]

[7] Luby, M.; Sinclair, A.; Zuckerman, D. Optimal speedup of Las Vegas algorithms. Inf. Process. Lett. 1993, 47, 173–180. [Google Scholar] [CrossRef]

[8] Audemard, G.; Simon, L. Predicting Learnt Clauses Quality in Modern SAT Solvers. In Proceedings of the 21st International Jont Conference on Artifical Intelligence, Pasadena, CA, USA, 11–17 July 2009; IJCAI’09. pp. 399–404. [Google Scholar]

[9] Luo, M.; Li, C.M.; Xiao, F.; Manyà, F.; Lü, Z. An Effective Learnt Clause Minimization Approach for CDCL SAT Solvers. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, Melbourne, Australia 19–25 August 2017; pp. 703–711. [Google Scholar] [CrossRef]

[10] Xiao, F.; Luo, M.; Li, C.M.; Manyà, F.; Lü, Z. MapleLRB LCM, Maple LCM, Maple LCM Dist, MapleLRB LCMoccRestart and Glucose-3.0+width in SAT Competition 2017. In Proceedings of the SAT Competition 2017: Solver and Benchmark Descriptions, Melbourne, Australia, 28 August–1 September 2017; Volume B-2017-1, pp. 25–26. [Google Scholar]

[11] Nadel, A.; Ryvchin, V. Chronological Backtracking. In Proceedings of the Theory and Applications of Satisfiability Testing—SAT 2018, Oxford, UK, 9–12 July 2018; Beyersdorff, O., Wintersteiger, C.M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 111–121. [Google Scholar]

[12] Kochemazov, S.; Zaikin, O.; Semenov, A.A.; Kondratiev, V. Speeding Up CDCL Inference with Duplicate Learnt Clauses. In Proceedings of the ECAI 2020—24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 29 August–8 September 2020; Giacomo, G.D., Catalá, A., Dilkina, B., Milano, M., Barro, S., Bugarín, A., Lang, J., Eds.; IOS Press: Shepherdsville, KY, USA, 2020; Volume 325, pp. 339–346. [Google Scholar] [CrossRef]

[13] Liang, J.H.; Ganesh, V.; Poupart, P.; Czarnecki, K. Exponential Recency Weighted Average Branching Heuristic for SAT Solvers. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; AAAI’16. pp. 3434–3440. [Google Scholar]

[14] Liang, J.H.; Ganesh, V.; Poupart, P.; Czarnecki, K. Learning Rate Based Branching Heuristic for SAT Solvers. In Proceedings of the Theory and Applications of Satisfiability Testing—SAT 2016—19th International Conference, Bordeaux, France, 5–8 July 2016; Creignou, N., Berre, D.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9710, pp. 123–140. [Google Scholar] [CrossRef]

[15] Zhang, X.; Cai, S. Relaxed Backtracking with Rephasing. In Proceedings of the SAT Competition 2020, Alghero, Italy, 3–10 July 2020; Solver and Benchmark Descriptions. University of Helsinki, Department of Computer Science: Helsinki, Finland, 2020; Volume B-2020-1, pp. 15–16. [Google Scholar]

The results of the SAT competitions have led researchers to conclude that (1) industrial, crafted, and random SAT instances have distinct structures, and (2) SAT-solving methods could exploit such structures.

   
  我们对主干和后门提出了三种新的相关措施:主干频率、主干覆盖率和后门覆盖率(读者可参阅附录A,其中从2002-2020年SAT竞赛中提取的工业、手工和随机基准实例的主干和后门相关措施的证据进行了调查。
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   
   

文献阅读笔记——Boosting the Performance of CDCL-Based SAT Solvers by Exploiting Backbones and Backdoors的更多相关文章

  1. 文献阅读笔记——group sparsity and geometry constrained dictionary

    周五实验室有同学报告了ICCV2013的一篇论文group sparsity and geometry constrained dictionary learning for action recog ...

  2. 人体姿势识别,Convolutional pose machines文献阅读笔记。

    开源实现 https://github.com/shihenw/convolutional-pose-machines-release(caffe版本) https://github.com/psyc ...

  3. 个性探测综述阅读笔记——Recent trends in deep learning based personality detection

    目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...

  4. [阅读笔记]Zhang Y. 3D Information Extraction Based on GPU.2010.

    1.立体视觉基础 深度定义为物体间的距离 视差定义为同一点在左图(reference image) 和右图( target image) 中的x坐标差. 根据左图中每个点的视差得到的灰度图称为视差图. ...

  5. CI框架源代码阅读笔记3 全局函数Common.php

    从本篇開始.将深入CI框架的内部.一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说.全局函数具有最高的载入优先权.因此大多数的框架中BootStrap ...

  6. Mina源码阅读笔记(一)-整体解读

    今天的这一节,将从整体上对mina的源代码进行把握,网上已经有好多关于mina源码的阅读笔记,但好多都是列举了一下每个接口或者类的方法.我倒是想从mina源码的结构和功能上对这个框架进行剖析.源码的阅 ...

  7. 《Graph Neural Networks: A Review of Methods and Applications》阅读笔记

    本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习 ...

  8. Nature/Science 论文阅读笔记

    Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science l ...

  9. [系统重装日志1]快速迁移/恢复Mendeley的文献和笔记

    一时手贱把原先系统的EFI分区给删了,按照网上的教程还没有恢复成功,无奈之下只能重装系统,想想这么多环境和配置真是酸爽. 身为一个伪科研工作者,首先想到的是自己的文献和阅读笔记.我所使用的文献管理工具 ...

  10. 阅读笔记 1 火球 UML大战需求分析

    伴随着七天国庆的结束,紧张的学习生活也开始了,首先声明,阅读笔记随着我不断地阅读进度会慢慢更新,而不是一次性的写完,所以会重复的编辑.对于我选的这本   <火球 UML大战需求分析>,首先 ...

随机推荐

  1. win10输入法微软拼音被禁用

    远程桌面到win10系统后,再次回到被远程的win10,会发现输入法被禁用,无法输入汉字无法切换输入法只能使用英文输入 方法1 可以把相关的应用程序关闭后重新打开(不实用) 方法2 任务计划,micr ...

  2. 抓包工具Fidder

    第一步:直接在浏览器下载 第二步:设置Fiddler打开Fiddler,     Tools-> Fiddler Options (配置完后记得要重启Fiddler)选中"Decrpt ...

  3. codeforces 1391E Pairs of Pairs dfs树的性质

    https://codeforces.com/problemset/problem/1391/E 题意:给一个无向图,找出以下任意一种输出答案 1,长度>=n/2(上界)的简单路径(没有同一个点 ...

  4. sql使用!=查询时会忽略null数据

    table_a有3条数据 column1值分别为1,0,null 那么 select * from table_a where column1!='1' 只会查到clumn1为0的数据,null的数据 ...

  5. 手机安装python环境

    一.安装Termux环境 1.下载Termux Qpython 安装以后玩爬虫各种报错,也就不纠结了,直接弄Termux 虚拟环境 下载链接:https://wiki.termux.com/wiki/ ...

  6. 服务器做bond,交换机做port-channel

    端口绑定的种类(具体介绍网上很多参考) balance-rr or 0 active-backup or 1 balance-xor or 2 broadcast or 3 802.3ad or 4 ...

  7. maven profile 的作用

    maven 的profile  可以是我们通过编译时指定 -P 来实现 使用不同的 属性变量. 比如: <profiles> <profile> <id>local ...

  8. 理解cpu过高的逻辑思维与分析方法

    工作经常碰到负载过高,cpu占有太高,系统变慢,运维通常做的第一件事就是通过top或者uptime命令来了解系统负载的情况 通常uptime后会出现三个小数,就是平均负载值,那真正的了解这个平均负载值 ...

  9. git 指令:丢弃本地所有未提交的更改

    git clean -df //丢弃所有 untracked 的文件 git reset --hard //将 tracked 的文件重置到前一个版本

  10. vue- cube-scroll踩坑记

    坑: 下拉刷新,上拉加载一直处于加载中  ---  原因:未结束此次下拉或上拉  ---解决:forceUpdate()结束上拉或下拉 无法正常滚动  --- 原因:数据更新了,但页面高度未变化 -- ...