文献阅读笔记——Boosting the Performance of CDCL-Based SAT Solvers by Exploiting Backbones and Backdoors
Boosting the Performance of CDCL-Based SAT Solvers by Exploiting Backbones and Backdoors
布尔结构措施
本研究考虑的措施包括与主干和后门相关的措施: 主干大小、主干频率和后门大小。
当前SAT主要关键技术及其相关文献——参见下面这段叙述。 The annual SAT competitions have become an essential event for the distribution of SAT benchmarks and the development of new SAT-solving methods [5]. Sequential SAT solvers compete mainly in three categories: industrial, crafted, and random tracks. The SAT competitions have demonstrated how difficult it is for SAT solvers to perform well across all categories. Results show that conflict-driven clause-learning (CDCL) SAT solvers were most performant for solving industrial and crafted SAT benchmarks, whereas look-ahead and Stochastic Local Search (SLS)-based SAT solvers have dominated the random category [5]. Modern implementations of CDCL SAT solvers employ a lot of heuristics. Some of them can be considered baseline, such as the Variable State Independent Decaying Sum (VSIDS) [6], restarts [7], and Literal Block Distance (LBD) [8]. Several others were incorporated recently, including: Learnt Clause Minimization (LCM) [9], Distance (Dist) heuristic [10], Chronological Backtracking (ChronoBT) [11], duplicate learnts heuristic [12], Conflict History-Based (CHB) heuristic [13], Learning Rate-based Branching (LRB) heuristic [14], and the SLS component [15]. [5] SAT Competitions. 2002. Available online: http://www.satcompetition.org (accessed on 19 November 2019). [6] Moskewicz, M.W.; Madigan, C.F.; Zhao, Y.; Zhang, L.; Malik, S. Chaff: Engineering an efficient SAT solver. In Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232), Las Vegas, NV, USA, 22 June 2001; pp. 530–535. [Google Scholar] [CrossRef] [7] Luby, M.; Sinclair, A.; Zuckerman, D. Optimal speedup of Las Vegas algorithms. Inf. Process. Lett. 1993, 47, 173–180. [Google Scholar] [CrossRef] [8] Audemard, G.; Simon, L. Predicting Learnt Clauses Quality in Modern SAT Solvers. In Proceedings of the 21st International Jont Conference on Artifical Intelligence, Pasadena, CA, USA, 11–17 July 2009; IJCAI’09. pp. 399–404. [Google Scholar] [9] Luo, M.; Li, C.M.; Xiao, F.; Manyà, F.; Lü, Z. An Effective Learnt Clause Minimization Approach for CDCL SAT Solvers. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, IJCAI-17, Melbourne, Australia 19–25 August 2017; pp. 703–711. [Google Scholar] [CrossRef] [10] Xiao, F.; Luo, M.; Li, C.M.; Manyà, F.; Lü, Z. MapleLRB LCM, Maple LCM, Maple LCM Dist, MapleLRB LCMoccRestart and Glucose-3.0+width in SAT Competition 2017. In Proceedings of the SAT Competition 2017: Solver and Benchmark Descriptions, Melbourne, Australia, 28 August–1 September 2017; Volume B-2017-1, pp. 25–26. [Google Scholar] [11] Nadel, A.; Ryvchin, V. Chronological Backtracking. In Proceedings of the Theory and Applications of Satisfiability Testing—SAT 2018, Oxford, UK, 9–12 July 2018; Beyersdorff, O., Wintersteiger, C.M., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 111–121. [Google Scholar] [12] Kochemazov, S.; Zaikin, O.; Semenov, A.A.; Kondratiev, V. Speeding Up CDCL Inference with Duplicate Learnt Clauses. In Proceedings of the ECAI 2020—24th European Conference on Artificial Intelligence, Santiago de Compostela, Spain, 29 August–8 September 2020; Giacomo, G.D., Catalá, A., Dilkina, B., Milano, M., Barro, S., Bugarín, A., Lang, J., Eds.; IOS Press: Shepherdsville, KY, USA, 2020; Volume 325, pp. 339–346. [Google Scholar] [CrossRef] [13] Liang, J.H.; Ganesh, V.; Poupart, P.; Czarnecki, K. Exponential Recency Weighted Average Branching Heuristic for SAT Solvers. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; AAAI’16. pp. 3434–3440. [Google Scholar] [14] Liang, J.H.; Ganesh, V.; Poupart, P.; Czarnecki, K. Learning Rate Based Branching Heuristic for SAT Solvers. In Proceedings of the Theory and Applications of Satisfiability Testing—SAT 2016—19th International Conference, Bordeaux, France, 5–8 July 2016; Creignou, N., Berre, D.L., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 9710, pp. 123–140. [Google Scholar] [CrossRef] [15] Zhang, X.; Cai, S. Relaxed Backtracking with Rephasing. In Proceedings of the SAT Competition 2020, Alghero, Italy, 3–10 July 2020; Solver and Benchmark Descriptions. University of Helsinki, Department of Computer Science: Helsinki, Finland, 2020; Volume B-2020-1, pp. 15–16. [Google Scholar] The results of the SAT competitions have led researchers to conclude that (1) industrial, crafted, and random SAT instances have distinct structures, and (2) SAT-solving methods could exploit such structures. |
|
我们对主干和后门提出了三种新的相关措施:主干频率、主干覆盖率和后门覆盖率(读者可参阅附录A,其中从2002-2020年SAT竞赛中提取的工业、手工和随机基准实例的主干和后门相关措施的证据进行了调查。 | |
文献阅读笔记——Boosting the Performance of CDCL-Based SAT Solvers by Exploiting Backbones and Backdoors的更多相关文章
- 文献阅读笔记——group sparsity and geometry constrained dictionary
周五实验室有同学报告了ICCV2013的一篇论文group sparsity and geometry constrained dictionary learning for action recog ...
- 人体姿势识别,Convolutional pose machines文献阅读笔记。
开源实现 https://github.com/shihenw/convolutional-pose-machines-release(caffe版本) https://github.com/psyc ...
- 个性探测综述阅读笔记——Recent trends in deep learning based personality detection
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...
- [阅读笔记]Zhang Y. 3D Information Extraction Based on GPU.2010.
1.立体视觉基础 深度定义为物体间的距离 视差定义为同一点在左图(reference image) 和右图( target image) 中的x坐标差. 根据左图中每个点的视差得到的灰度图称为视差图. ...
- CI框架源代码阅读笔记3 全局函数Common.php
从本篇開始.将深入CI框架的内部.一步步去探索这个框架的实现.结构和设计. Common.php文件定义了一系列的全局函数(一般来说.全局函数具有最高的载入优先权.因此大多数的框架中BootStrap ...
- Mina源码阅读笔记(一)-整体解读
今天的这一节,将从整体上对mina的源代码进行把握,网上已经有好多关于mina源码的阅读笔记,但好多都是列举了一下每个接口或者类的方法.我倒是想从mina源码的结构和功能上对这个框架进行剖析.源码的阅 ...
- 《Graph Neural Networks: A Review of Methods and Applications》阅读笔记
本文是对文献 <Graph Neural Networks: A Review of Methods and Applications> 的内容总结,详细内容请参照原文. 引言 大量的学习 ...
- Nature/Science 论文阅读笔记
Nature/Science 论文阅读笔记 Unsupervised word embeddings capture latent knowledge from materials science l ...
- [系统重装日志1]快速迁移/恢复Mendeley的文献和笔记
一时手贱把原先系统的EFI分区给删了,按照网上的教程还没有恢复成功,无奈之下只能重装系统,想想这么多环境和配置真是酸爽. 身为一个伪科研工作者,首先想到的是自己的文献和阅读笔记.我所使用的文献管理工具 ...
- 阅读笔记 1 火球 UML大战需求分析
伴随着七天国庆的结束,紧张的学习生活也开始了,首先声明,阅读笔记随着我不断地阅读进度会慢慢更新,而不是一次性的写完,所以会重复的编辑.对于我选的这本 <火球 UML大战需求分析>,首先 ...
随机推荐
- 删除 gnome自带的Videos软件
gnome3自带的Videos粗看感觉听简洁挺流畅的,可是细看不仅电影中文名乱码显示还搞得字幕慢半拍,这一点完全不能忍,太难受了. 还是Vlc牛.而且Videos在应用商店不能卸载,命令行搜索已安装软 ...
- “adb”不是内部或外部命令——解决方案
在AS(Android Studio简称AS)app真机测试中adb可以轻松找到安卓设备,ADB全称Android Debug Bridge,用于Android设备进行交互,也可以这样理解ADB是An ...
- 关于iptables的一些知识
关闭firewalld, 启用iptables:systemctl stop firewalld && systemctl disable firewalld # 关闭firewa ...
- python手动安装包办法
首先去官网找知己需要的包,我这是以自己安装为例 先找需要安装的包然后看箭头准备下载 我这里选择的是tar压缩格式的点一下箭头指的地方会弹出下载按钮,之后下载即可 找到自己安装的python文件所在的位 ...
- java 守护线程的关闭
在进程内所有用户线程 全部消亡后,如果 守护线程仍在执行 ( 注意: 守护线程并不是一直运行中,守护线程中的代码执行完毕,则守护线程自然消亡. ),则会被强制消亡.
- vite vue插件打包配置
import { defineConfig, UserConfigExport, ConfigEnv } from "vite"; import externalGlobals f ...
- fastadmin打包插件
<?php namespace app\command; use think\console\Command; use think\console\Input; use think\consol ...
- Django和DRF的区别
Django和DRF的区别 一.Django REST Framwork 和 Django 1.两者的概念: Django REST Framwork: 将数据库的东西通过ORM的映射取出来,通过vi ...
- 2019-2020-1 20199318《Linux内核原理与分析》第十一周作业
<Linux内核原理与分析> 第十一周作业 一.预备知识 什么是ShellShock? Shellshock,又称Bashdoor,是在Unix中广泛使用的Bash shell中的一个安全 ...
- 面试视频知识点整理1-12(渲染机制,js运行机制,页面性能,错误监控)
技巧(赞美面试官研究的比较深) 1.渲染机制 什么是DOCTYPE及作用? DTD(文档类型定义)是一系列的语法规则,用于定义文件类型.浏览器会根据它来判断文档类型,决定使用何种协议来解析以及切换浏览 ...