简要题面

维护一个数据结构,支持单点修改,询问区间所有子区间的异或和的异或和 .

做法

首先,题目要求所有子区间的异或和的异或和,发现每个元素异或两次就变成 \(0\),所以考虑统计每个元素出现的次数

把区间覆盖元素改成由元素枚举区间,若区间为 \([l,r]\),元素为 \(a_i\),那么能覆盖到它的就有 \((l-i+1)(r-i+1)\) 个区间(枚举左右端点),即它出现了 \((l-i+1)(r-i+1)\) 次

不难发现 \(i\) 有贡献当且仅当 \((l-i+1)(r-i+1)\) 为奇数,即 \(l-i+1,r-i+1\) 均为奇数 . 易见 \(l,r,i\) 奇偶性相同 .

维护两个树状数组作奇数位和偶数位即可维护(因为 \(i\) 和 \(l,r\) 奇偶性相同)

比较方便的办法是令没有的位赋为 \(0\)

注意单点修改 \(a_i\gets k\) 等价于 \(a_i\gets a_i\oplus(a_i\oplus k)\),其中 \(\oplus\) 是异或 .

代码

using namespace std;
typedef long long ll;
const int N=2e5+500;
int n,m,arr[N];
template<typename T>
struct BIT
{
private:
T s[N];
inline T lowbit(T x){return x&-x;}
public:
inline T query(T x)
{
T ans=0;
while (x){ans^=s[x]; x-=lowbit(x);}
return ans;
}
inline T query(T l,T r){return query(r)^query(l-1);}
inline void change(int x,T now){if (x) while (x<=n){s[x]^=now; x+=lowbit(x);}}
};
BIT<ll> A,B;
// A 偶数
// B 奇数
void change(int idx,int a)
{
if (idx&1) B.change(idx,a^arr[idx]);
else A.change(idx,a^arr[idx]);
}
ll query(int l,int r)
{
if ((l-r)&1) return 0;
if (l&1) return B.query(l,r);
else return A.query(l,r);
}
int main()
{
scanf("%d%d",&n,&m);
for (int i=1,x;i<=n;i++) scanf("%d",&x),change(i,x),arr[i]=x;
int opt,x,y;
while (m--)
{
scanf("%d%d%d",&opt,&x,&y);
if (opt==1) change(x,y),arr[x]=y;
else printf("%lld\n",query(x,y));
}
return 0;
}

[eJOI2019]异或橙子 题解的更多相关文章

  1. 洛谷 P6225 [eJOI2019]异或橙子 (树状数组)

    题意:有\(n\)个数,起始值均为\(0\),进行\(q\)次操作,每次输入三个数,如果第一个数为\(1\),则将第\(i\)个数修改为\(j\),如果为\(2\),则求区间\([l,r]\)内的所有 ...

  2. 洛谷P5283 & LOJ3048:[十二省联考2019]异或粽子——题解

    https://www.luogu.org/problemnew/show/P5283 https://loj.ac/problem/3048 小粽是一个喜欢吃粽子的好孩子.今天她在家里自己做起了粽子 ...

  3. BZOJ3261:最大异或和——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=3261 给定一个非负整数序列{a},初始长度为N. 有M个操作,有以下两种操作类型: 1.A x:添加 ...

  4. BZOJ5301:[CQOI2018]异或序列——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5301 https://www.luogu.org/problemnew/show/P4462 已知 ...

  5. 2016ACM-ICPC Qingdao Online青岛网络赛题解

    TonyFang+Sps+我=5/12 滚了个大粗 2016年9月21日16:42:36 10题完工辣 01 题意:求形同的数中大于n的最小值 题解:预处理所有的(5194个),在这里面二分 #inc ...

  6. HDU 5650 异或

    so easy Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Sub ...

  7. AcWing:143. 最大异或对(01字典树 + 位运算 + 异或性质)

    在给定的N个整数A1,A2……ANA1,A2……AN中选出两个进行xor(异或)运算,得到的结果最大是多少? 输入格式 第一行输入一个整数N. 第二行输入N个整数A1A1-ANAN. 输出格式 输出一 ...

  8. BZOJ3687:bitset STL

    [bzoj3687][FJ2014集训]简单题 2014年9月14日1,8212 [题目描述]小呆开始研究集合论了,他提出了关于一个数集四个问题:1. 子集的异或和的算术和.2. 子集的异或和的异或和 ...

  9. Codeforces Round #365 (Div. 2) D 树状数组+离线处理

    D. Mishka and Interesting sum time limit per test 3.5 seconds memory limit per test 256 megabytes in ...

随机推荐

  1. Tarjan入门

    Tarjan系列!我愿称Tarjan为爆搜之王! 1.Tarjan求LCA 利用并查集在一遍DFS中可以完成所所有询问.是一种离线算法. 遍历到一个点时,我们先将并查集初始化,再遍历完一个子树之后,将 ...

  2. 是时候为Spring Boot 3.0做准备了

    2018年2月28日Spring Boot进入2.0时代,距今已经超过4年了. 2022 年 11 月 Spring Boot 3.0 将正式发布,它将基于 Spring Framework 6.0, ...

  3. Makefile基础语法

    Makefile的作用 如果没有Makefile,每次修改源代码后,如果要重新编译代码,都要输入编译命令,当源代码很多时,效率很底下. 基本格式 target: componsnts TAB rule ...

  4. sklearn练习1 回归

    from sklearn.svm import SVR from sklearn.pipeline import make_pipeline from sklearn.preprocessing im ...

  5. Python with语句和上下文管理器

    open("FishC.txt","w")#此处需注意如果被打开的文件中,已有内容,那么用w的方式打开,则会导致原文件内容被截断,也就是相当于被清空了,然后重新 ...

  6. MySQL并行复制(MTS)原理(完整版)

    目录 MySQL 5.6并行复制架构 MySQL 5.7并行复制原理 Master 组提交(group commit) 支持并行复制的GTID slave LOGICAL_CLOCK(由order c ...

  7. Django 学习记录(AcWing)

    Django 2.1 搭建文件结构 前面的都是配置基本步骤,不需要理解,其他Django项目同样步骤操作: 接下来用Django-admin新建一个Django项目: django-admin sta ...

  8. 【Java集合】ArrayDeque源码解读

    简介 双端队列是一种特殊的队列,它的两端都可以进出元素,故而得名双端队列. ArrayDeque是一种以循环数组方式实现的双端队列,它是非线程安全的. 它既可以作为队列也可以作为栈. 继承体系 Arr ...

  9. 下载nltk数据包报错

    安装nltk需要两步:安装nltk和安装nltk_data数据包 安装nltk 安装nltk很简单,可以直接在pycharm环境中安装,flie -> settings-> Python ...

  10. Vue3.0系列——「vue3.0性能是如何变快的?」

    前言 先学习vue2.x,很多2.x内容依然保留: 先学习TypeScript,vue3.0是用TS重写的,想知其然知其所以然必须学习TS. 为什么学习vue3.0? 性能比vue2.x快1.2-2倍 ...