CCCC L3-032 关于深度优先搜索和逆序对的题应该不会很难吧这件事 【树状数组】
https://pintia.cn/problem-sets/994805046380707840/exam/problems/1518582895035215872
题意
给你一棵树,给定树根,要求树的所有结点编号的dfs序中逆序对的数量总和,对结果模 \(10^9 + 7\)
树的结点数 \(\leq 3*10^5\)
思路
首先会想到,树的dfs序的方案数是 \(\prod_{i=1}^{n}cntson[i]\)
接下来分析什么情况下树的dfs序会产生逆序对。
把会产生逆序对的情况分为两种,第一种是两个点是祖先和子孙的关系,那么如果祖先更大,这一对点一定会产生逆序对,对答案的贡献是dfs序的方案数
第二种是两个点不是祖先和子孙的关系,又因为每个点的编号互不相同,所以它们有1/2的概率会产生逆序对,对答案的贡献是dfs序的方案数/2
那么最后的答案就是 第一种情况的数量 * 第一种情况的点对贡献 + 第二种情况的数量 * 第二种情况的点对贡献
统计第一种情况的数量:需要知道一个点的祖先中有多少比它大,可以在dfs结点时模拟一个栈,当遍历到某个点就把它入栈,遍历子结点时它就在栈中,遍历完子节点后把它出栈,然后用树状数组统计数量
第二类点,只用分析一个父亲结点的子树的情况,然后会发现它就包含了所有第二类情况
code
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N = 3e5 + 10, mod = 1e9 + 7;
int n, r;
int a[N];
vector<int> e[N];
ll fac[N], base, c[N], s, s2;
int sz[N];
// 第二类点:不是祖先也不是子孙的点
ll qpow(ll a,ll b){
ll ans=1;
while(b){
if(b%2){
ans*=a;
ans%=mod;
}
a*=a;
a%=mod;
b/=2;
}
return ans;
}
inline int lowbit(int x) {return x & -x;}
void upd(int x, ll k){
while(x<=n){
c[x]+=k;
x+=lowbit(x);
}
}
ll sum(int x){
ll res=0;
while(x){
res+=c[x];
x-=lowbit(x);
}
return res;
}
void init(int n) {
fac[0] = 1;
for(int i = 1; i <= n; i++) fac[i] = fac[i - 1] * i % mod;
}
void dfs(int u, int fa) {
sz[u] = 1;
s = (s + sum(n) - sum(u)) % mod;
upd(u, 1);
ll t = 0;//
int cn = 0;
for(auto v : e[u]) {
if(v == fa) continue;
dfs(v, u);
sz[u] += sz[v];
cn++;
s2 += t * sz[v]; s2 %= mod;
t += sz[v];
}
base = base * fac[cn] % mod;
upd(u, -1);
}
int main() {
scanf("%d%d", &n, &r);
init(n);
for(int i = 1, u, v; i < n; i++) {
scanf("%d%d", &u, &v);
e[u].push_back(v);
e[v].push_back(u);
}
base = 1;
dfs(r, 0);
ll ans = s * base % mod;
// ans = (ans + (1ll * n * (n - 1) / 2 - s - s2) * base % mod * qpow(2, mod - 2) % mod) % mod;
ans = (ans + s2 * base % mod * qpow(2, mod - 2) % mod) % mod;
printf("%lld\n", ans);
// cout << "base: " << base << endl;
system("pause");
return 0;
}
CCCC L3-032 关于深度优先搜索和逆序对的题应该不会很难吧这件事 【树状数组】的更多相关文章
- POJ 2299 Ultra-QuickSort 求逆序数 (归并或者数状数组)此题为树状数组入门题!!!
Ultra-QuickSort Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 70674 Accepted: 26538 ...
- hdu 5147 Sequence II (树状数组 求逆序数)
题目链接 Sequence II Time Limit: 5000/2500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- Codeforces Round #261 (Div. 2) D. Pashmak and Parmida's problem (树状数组求逆序数 变形)
题目链接 题意:给出数组A,定义f(l,r,x)为A[]的下标l到r之间,等于x的元素数.i和j符合f(1,i,a[i])>f(j,n,a[j]),求i和j的种类数. 我们可以用map预处理出 ...
- HDU 1394 Minimum Inversion Number ( 树状数组求逆序数 )
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 Minimum Inversion Number ...
- POJ3928Ping pong[树状数组 仿逆序对]
Ping pong Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3109 Accepted: 1148 Descrip ...
- HDU 1394 Minimum Inversion Number(最小逆序数/暴力 线段树 树状数组 归并排序)
题目链接: 传送门 Minimum Inversion Number Time Limit: 1000MS Memory Limit: 32768 K Description The inve ...
- 51nod1019逆序数(归并排序/树状数组)
题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1019 题意:中文题诶- 思路: 方法1:归并排序- 归并排序过 ...
- POJ 2299 Ultra-QuickSort 逆序数 树状数组 归并排序 线段树
题目链接:http://poj.org/problem?id=2299 求逆序数的经典题,求逆序数可用树状数组,归并排序,线段树求解,本文给出树状数组,归并排序,线段树的解法. 归并排序: #incl ...
- HDU 4911 (树状数组+逆序数)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4911 题目大意:最多可以交换K次,就最小逆序对数 解题思路: 逆序数定理,当逆序对数大于0时,若ak ...
- POJ2299Ultra-QuickSort(归并排序 + 树状数组求逆序对)
树状数组求逆序对 转载http://www.cnblogs.com/shenshuyang/archive/2012/07/14/2591859.html 转载: 树状数组,具体的说是 离散化+树 ...
随机推荐
- Vulhub 漏洞学习之:Redis
Vulhub 漏洞学习之:Redis 1 Redis简介 Redis 是完全开源的,遵守 BSD 协议,是一个高性能的 key-value 数据库.Redis 与其他 key - value 缓存产品 ...
- js的map、filter的用法
filter() 创建新数组,新数组放指定数组中符合条件的元素,满足条件的留下,是对原数组的过滤. map() 返回一个新数组,数组中的元素为原始数组元素调用函数处理后的值,是对原数组的加工,映 ...
- Prettier 在 Vite 项目下格式化报错
Prettier 配置文件有很多种格式,有.json..js..yml等.因为 Vite 默认项目用的模块机制是 ES6,我的配置文件又正好是.js,且用的模块机制是 CommonJS.所以就是如上图 ...
- 推荐系统[八]算法实践总结V2:排序学习框架(特征提取标签获取方式)以及京东推荐算法精排技术实战
0.前言 「排序学习(Learning to Rank,LTR)」,也称「机器排序学习(Machine-learned Ranking,MLR)」 ,就是使用机器学习的技术解决排序问题.自从机器学习的 ...
- HBase架构及读写流程
HBase架构: Client 访问HBase的接口并维护cache来加快对HBase的访问 Zookeeper 1.保证任何时候,集群中只有一个活跃master 2.存储所 ...
- ARC157E XXYX Binary Tree 题解
首先,条件可以抽象为 Y 不能相连,然后: 钦定根为 Y,YX 的个数加上 \(2\): 钦定某一个叶子节点为 Y,XY 的个数加上 \(1\): 钦定某一个非叶子非根节点为 Y,YX 的个数加上 \ ...
- 最全面 think php 实现微信公众号回复编号进行投票,自定义菜单功能
前期准备工作 https://developers.weixin.qq.com/doc/offiaccount/Message_Management/Receiving_standard_messag ...
- CSS:布局篇_用flex布局实现两边顶宽中间自适应(圣杯布局&双飞翼布局)
CSS:布局篇_用flex布局实现两边顶宽中间自适应(圣杯布局&双飞翼布局) <!DOCTYPE html> <html> <head> <title ...
- java正则匹配字符串最外层{}里的内容,包含{}
String s = "start {sffff''{adfaw3ea}wfewrfwef----}";String regex = "(?<=\\{).*(?=\ ...
- 基于AD9361的双收双发射频FMC子卡
FMC177-基于AD9361的双收双发射频FMC子卡 一.板卡介绍 FMC177射频模块分别包含两个接收通道与发射通道,其频率可覆盖达到70MHz~6GHz,AD9361芯片提供具有成本效益的实验平 ...