powerful number筛
心血来潮跑来实现以下这个东西
我们应该知道杜教筛的理论是 \(f * g=h\),那么问题在于如何找 \(g\)。
之前的blog应该提到过可以令 \(g(p)=-f(p)\),这样一来 \(h\) 就只会在PN处有值。于是可以大力爆搜 \(h\),而 \(g\) 的块筛又很好处理。
但是这样复杂度会有一个下限为 \(O(n^{\frac 2 3})\),有没有办法去除呢?
办法是有的,反过来,设 \(h * g=f\)。
此时我们构造 \(g(p)=f(p)\) 即可得到和上面相同的结论,但此时只需处理 \(g\) 的块筛即可,复杂度下降至 \(O(\frac{n^{\frac 3 4}}{\log n})\) 或者更低。
问题来了,当 \(k>2\) 时,\(g(p^k)\) 应该是多少?
实际上是多少否无所谓,因为有 \(\sum_{i=0}^k h(p^i)g(p^{k-i})=f(p^k)\),一般情况令 \(g(p^k)=0\)。
但是我在实现的时候 推 错 了 \(g\) 的 块 筛 柿 子,懒得重新推。又发现我的柿子实际上是令 \(g(p^k)=f(p)^k\),如果直接暴力做卷积那么复杂度会变成 \(O(\sqrt n\log n)\),于是来优化一下:
\]
\]
于是处理出 \(\frac{f(p^k)}{f(p)^k}\),然后来个差分求逆元就好,复杂度变回了 \(O(\sqrt n)\),不过需要存在逆元才行。
但是?
\]
\]
不需要逆元也可以。
这里丢一下 DIVCNTK 的实现,目前是 lgrk2,spojrk7:
#include<cstdio>
#include<cmath>
typedef unsigned ui;
typedef __uint128_t L;
typedef unsigned long long ull;
const ui M=1e5+5;
ull n,K,h[M],F[M],G[M],f0[M],g0[M];L B[M];ui S,top,pri[M];
ull DFS(const ull&n,const ui&k){
ull ans=n<=S?G[n]+1:F[::n/n]+1;
for(ui i=k+1;i<=top&&1ull*pri[i]*pri[i]<=n;++i){
ull*H=h+2;
for(ull N=(n*B[pri[i]]>>64)*B[pri[i]]>>64;N;N=N*B[pri[i]]>>64){
ans+=*H++*DFS(N,i);
}
}
return ans;
}
inline ull PN(const ull&n){
ui i,j,k,tp=0,sqr;ull w,lim;top=0;
for(S=1;1ull*S*S<=n;++S)f0[S]=(n*B[S]>>64)-1,g0[S]=S-1;
sqr=sqrt(--S);
for(i=2;i<=S;++i)if(g0[i]^g0[i-1]){
w=n*B[i]>>64;lim=w*B[i]>>64;if(lim>S)lim=S;k=S*B[i]>>64;++tp;
const ull&S0=g0[i-1];
for(j=1;j<=k;++j)f0[j]-=f0[i*j]-S0;
for(;j<=lim;++j)f0[j]-=g0[w*B[j]>>64]-S0;
if(i<=sqr){
for(lim=k*i,j=S;k>=i;lim-=i,--k){
for(const ull&V0=g0[k]-S0;j>=lim;--j)g0[j]-=V0;
}
}
}
for(i=1;i<=S;++i)F[i]=f0[i]*K,G[i]=g0[i]*K;top=tp++;
for(i=S;i>1;--i)if(g0[i]^g0[i-1]){
const ull&g=g0[i-1]*K;
if(i<=sqr){
for(k=i,lim=(k+1)*i,j=lim-i;lim<=S;lim+=i,++k){
for(const ull&V=K*(G[k]-g);j<lim;++j)G[j]+=V;
}
for(const ull&V=K*(G[k]-g);j<=S;++j)G[j]+=V;
}
w=n*B[i]>>64;lim=w*B[i]>>64;if(lim>S)lim=S;k=S*B[i]>>64;pri[--tp]=i;
for(j=lim;j>k;--j)F[j]+=K*(G[w*B[j]>>64]-g);
for(j=k;j>=1;--j)F[j]+=K*(F[i*j]-g);
}
lim=log(n)/log(2);K=(K-1)*(K-1);
for(i=1;i<=lim;++i)h[i]=-K*(i-1);
return DFS(n,0);
}
signed main(){
ui T;for(T=1;T<M;++T)B[T]=((L(1)<<64)+T-1)/T;scanf("%u",&T);
while(T--)scanf("%llu%llu",&n,&K),++K,printf("%llu\n",PN(n));
}
powerful number筛的更多相关文章
- Powerful Number 筛学习笔记
Powerful Number 筛学习笔记 用途 \(Powerful\ number\) 筛可以用来求出一类积性函数的前缀和,最快可以达到根号复杂度. 实现 \(Powerful\ number\) ...
- [笔记] Powerful Number 筛
定义 Powerful Number(以下简称 PN)筛类似于杜教筛,可以拿来求一些积性函数的前缀和. 要求: 假设现在要求积性函数 \(f\) 的前缀和 \(F(n)=\sum_{i=1}^nf(i ...
- 利用powerful number求积性函数前缀和
好久没更博客了,先水一篇再说.其实这个做法应该算是杜教筛的一个拓展. powerful number的定义是每个质因子次数都 $\geq 2$ 的数.首先,$\leq n$ 的powerful num ...
- Note - Powerful Number
Powerful Number 对于 \(n\in\mathbb N_+\),若不存在素数 \(p\) 使得 \(p\mid n~\land~p^2\not\mid n\),则称 \(n\) 为 ...
- Powerful Number 筛法
我也不想学筛法了,可你考试时候出一个新筛法就不厚道了吧,我还开始以为这是杜教筛... $tips:$学完杜教筛立马学$Powerful \ Number$筛法,此筛法强悍如斯 $Powerful \ ...
- powerful number求积性函数前缀和
算法原理 本文参考了 zzq's blog . \(\text{powerful number}\) 的定义是每个质因子次数都 \(\ge 2\) 的数,有个结论是 \(\ge n\) 的 \(\te ...
- Powerful Number 学习笔记
定义 对于一个正整数 \(n\) ,若完全分解之后不存在指数 \(=1\) ,则称 \(n\) 为 \(\text{Powerful Number}\) . 可以发现的是,在 \([1,n]\) 中, ...
- 【HDOJ6623】Minimal Power of Prime(Powerful Number)
题意:给定大整数n,求其质因数分解的最小质数幂 n<=1e18 思路:常规分解算法肯定不行 考虑答案大于1的情况只有3种:质数的完全平方,质数的完全立方,以及p^2*q^3,p,q>=1三 ...
- 筛 sigma_k
问题 定义 \(\sigma_k(n)\) 表示 \(n\) 的所有约数的 \(k\) 次方和,即 \[\sigma_k(n)=\sum_{d\mid n}d^k \] 问题:求 \(\sigma_k ...
随机推荐
- bootstrap移动 pc 响应轮播
PC端效果 width100% 移动端 <!DOCTYPE html> <html lang="zh-CN"> <head> <meta ...
- Socket和数据库的一些使用---郭雪彬
最近偶尔有时间,研究了下Socket的使用,虽然不简单,不过还是挺有意思,刚好咱们带头大哥需要我们发檄文,也罢,那就来一篇,废话不多说,直接入正题 struct sockaddr_in server_ ...
- 【CF632F】Magic Matrix(生成树 脑洞)
题目链接 大意 给定一个\(N\times N\)的矩阵,问是否满足以下三个条件: \(A_{i,i}=0\) \(A_{i,j}=A_{j,i}\) 对于任意的\(i,j,k\),满足\(A_{i, ...
- Spack 内置函数
1.Map函数:通过函数传递源的每个元素,并形成新的分布式数据集. %spark #并行化集合生成RDD var data = sc.parallelize(List(10,20,30)) %输出结果 ...
- 警惕!Python 中少为人知的 10 个安全陷阱!
作者:Dennis Brinkrolf 译者:豌豆花下猫@Python猫 原题:10 Unknown Security Pitfalls for Python 英文:https://blog.sona ...
- Vue 组件库:Element
目录 Element 介绍 什么是 Element ? Element 快速入门 Element 常用组件 基础布局 容器布局 表单组件 表格组件 顶部导航栏组件 侧边导航栏组件 Element 介绍 ...
- Oracle 撤回已经提交的事务
在PL/SQL操作了一条delete语句习惯性的commit 了,因少加了where条件 导致多删了数据 1.查询视图v$sqlarea,找到操作那条SQL的时间(FIRST_LOAD_TIME) s ...
- 手把手带你基于嵌入式Linux移植samba服务
摘要:Samba是在Linux和UNIX系统上实现SMB协议的一个免费软件,由服务器及客户端程序构成. 本文分享自华为云社区<嵌入式Linux下移植samba服务--<基于北斗和4G ca ...
- 基于 Kintex-7 XC7K325T的半高PCIe x4双路万兆光纤收发卡
一.板卡概述 板卡采用Xilinx公司的XC7K325T-2FFG900I芯片作为主处理器,可应用于万兆网络.高速数据采集.存储:光纤隔离网闸等领域. 二.功能和技术指标: 板卡功能 参数内容 主处理 ...
- rust连接oracle数据库遇到DPI-1047: Cannot locate a 64-bit Oracle Client library的解决方案
这两天要实现一个用rust连接远程的oracle数据库的需求,所以就需要用rust连接oracle. 在github上面找到一个库,地址:https://github.com/kubo/rust-or ...