平面曲线的长度:

积分的重要作用体现在处理曲线和曲面。

在这里我们讨论平面中一条用参数形式表达的曲线:x=f(t),y=g(t),a≤t≤b.

如图。

y=f(x)形式的弧长计算:

之前我们讨论过平面笛卡尔系下参数形式的弧长公式,现在对于一般的y=f(x)的形式,我们可以将其等价转化成参数形式:

令x=t,y=f(t),a≤t≤b.

然后再将参数形式带入之前讨论参数形式得到的结论,我们就能够得到如下的定义:

《University Calculus》-chape6-定积分的应用-平面曲线长度的更多相关文章

  1. 《University Calculus》-chaper13-多重积分-二重积分的引入

    这一章节我们开始对多重积分的研究. 在此之前,我们首先来回忆起积分的过程,在平面中,面临求解不规则图形的面积(常叫曲边梯形)的时候,我们可以采取建立直角坐标系,然后通过得到不规则图形边界的函数表达式f ...

  2. 《University Calculus》-chape6-定积分的应用-求体积

    定积分一个广泛的应用就是在求解一些“看似不规则”的几何体的体积,之所以说看似不规则,是因为不规则之下还是有一定的“规则性”可言的,我们就是需要抓住这些线索进行积分运算得到体积. 方法1:切片法. 这里 ...

  3. 《University Calculus》-chape10-向量与空间几何学-向量夹角

    点积.向量夹角: 无论对于空间向量还是平面向量,我们所熟知的是:给出任意两个向量,我们都能够根据公式计算它们的夹角,但是这个夹角必须是将两个向量的起点重合后所夹成的小于等于π的角,可是,这是为什么呢? ...

  4. 《University Calculus》-chape4-极坐标与圆锥曲线-极坐标系下的面积与弧长

    极坐标系下的面积: 在直角坐标系下一样,这里在极坐标系下,我们面临一个同样的问题:如何求解一个曲线围成的面积?虽然两种情况本质上是一样的,但是还是存在一些细小的区别. 在直角坐标系下中,我们是讨论一条 ...

  5. 《University Calculus》-chape12-偏导数-基本概念

    偏导数本质上就是一元微分学向多元函数的推广. 关于定义域的开域.闭域的推广: 其实这个定义本质上讲的就是xoy面上阴影区域的最外面的一周,只不过这里用了更加规范的数学语言. 二次函数的图形.层曲线(等 ...

  6. 《University Calculus》-chape5-积分法-微积分基本定理

    定积分中值定理: 积分自身的定义是简单的,但是在教学过程中人们往往记得的只是它的计算方法,在引入积分的概念的时候,往往就将其与计算方法紧密的捆绑在一起,实际上,在积分简单的定义之下,微积分基本定理告诉 ...

  7. 《University Calculus》-chape10-向量和空间几何学-叉积

    叉积概念的引入: 在平面中我们为了度量一条直线的倾斜状态,为引入倾斜角这个概念.而通过在直角坐标系中建立tan α = k,我们实现了将几何关系和代数关系的衔接,这其实也是用计算机解决几何问题的一个核 ...

  8. 《University Calculus》-chape8-无穷序列和无穷级数-欧拉恒等式

    写在前面:写在前面的当然是对大天朝教材的吐槽啦. 曾记否,高中所学虚数和复平面的概念,如此虚无的概念到了大学一门叫<模拟电子技术>的课程中居然明目张胆的开始进行计算! 曾记否,高中的指对运 ...

  9. 《University Calculus》-chape8-无穷序列和无穷级数-基本极限恒等式

    基于基本的极限分析方法(诸多的无穷小以及洛必达法则),我们能够得到推导出一些表面上看不是那么显然的式子,这些极限恒等式往往会在其他的推导过程中用到,其中一个例子就是概率论中的极限定理那部分知识.

随机推荐

  1. .NET中的消息队列

    下文参考:http://hi.baidu.com/21tian/blog/item/ce5464097ddf10cb3ac76335.html为何使用消息队列 您可能认为您能够通过一个简单的数据库表( ...

  2. SOA,ESB 与 SCA

    SOA,ESB与 SCA SOA 与 ESB SOA(Service Oriented Architecture),面向服务体系结构,是一种组件模型架构,一种支撑软件运行的相对稳定的结构.其本质是一种 ...

  3. 关于sqlserver2012重启后ID自增1000的问题解决方案

    1. Open "SQL Server Configuration Manager" 2. Click "SQL Server Services" on the ...

  4. centos 6.5 openfire安装

    1.下载:http://igniterealtime.org/downloads/download-landing.jsp?file=openfire/openfire-3.9.3-1.i386.rp ...

  5. [转]操作xml,将xml数据显示到treeview的C#代码

    XmlDocument xml = new XmlDocument(); private void Form1_Load(object sender, EventArgs e) { CreateXML ...

  6. js 中对象--属性相关操作

    查询属性: 可以用 对象.属性 来查询属性和属性方法               或者                    对象[“属性”]  来查询属性和属性方法 演示代码: <script ...

  7. css3多行省略号

    -webkit-line-clamp 概述: -webkit-line-clamp 是一个 不规范的属性(unsupported WebKit property),它没有出现在 CSS 规范草案中. ...

  8. Android中使用WebView与JS交互全解析

    1.概述首先,需要提出一个概念,那就是hybrid,主要意思就是native原生Android和h5混合开发.为什么要这样做呢?大家可以想象一下针对于同一个活动,如果使用纯native的开发方式,An ...

  9. PHP代码分离

    所谓的代码分离 其实只是一种思路,既然是一种思路 那就意味着他是有需求的 没有需求就没有解决方案 没有方案就不存在思路. 在这之前,我们制作 PHP 程序页面的时候.都是 HTML 和 PHP 混合写 ...

  10. 【python之旅】python的模块

    一.定义模块: 模块:用来从逻辑上组织python代码(变量.函数.类.逻辑:实现一个功能),本质就是以.py结尾的python文件(文件名:test.py ,对应的模块名就是test) 包:用来从逻 ...