题意:给你一个哈密顿图,判断是不是平面图

思路:先找出哈密顿图来。哈密顿回路可以看成一个环,把边集划分成两个集合,一个在环内,一个在外。如果有两条相交边在环内,则一定不是平面图,所以默认两条相交边,转化成2——sat,两条边不能同时在内或外,注意双向加边。(以边来转化成两倍)

 #include<cstdio>
#include<cstring>
#include<iostream>
#include<queue>
#include<stack>
#include<bits/stdc++.h>
using namespace std;
#define LL long long
#define clc(a,b) memset(a,b,sizeof(a))
const int maxn = + ;
int r(){
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int T,n,m,ind,top,cnt,scc;
int u[],v[];
int c[],pos[];
int last[],dfn[],low[],q[],bl[];
bool inq[]; struct edge{
int to,next;
}e[]; void add(int u,int v){
e[++cnt].to=v;
e[cnt].next=last[u];
last[u]=cnt;
} void tarjan(int x){
inq[x]=;q[++top]=x;
low[x]=dfn[x]=++ind;
for(int i=last[x];i;i=e[i].next)
if(!dfn[e[i].to])
tarjan(e[i].to),low[x]=min(low[x],low[e[i].to]);
else if(inq[e[i].to])
low[x]=min(low[x],dfn[e[i].to]);
int now=-;
if(low[x]==dfn[x])
{
scc++;
while(now!=x)
{
now=q[top--];inq[now]=;
bl[now]=scc;
}
}
} bool jude(){
for(int i=;i<=m;i++){
if(bl[i*]==bl[i*-])
return false;
}
return true;
}
int main(){
T=r();
while(T--){
n=r(),m=r();
for(int i=;i<=m;i++){
u[i]=r();v[i]=r();
}
clc(last,);
cnt=;
scc=ind=;
clc(low,);
clc(dfn,);
for(int i=;i<=n;i++)
c[i]=r();
if(m>*n-){
printf("NO\n");
continue;
}
for(int i=;i<=n;i++)
pos[c[i]]=i;
top=;
for(int i=;i<=m;i++){
u[i]=pos[u[i]],v[i]=pos[v[i]];
if(u[i]>v[i]) swap(u[i],v[i]);
if(v[i]-u[i]==||v[i]-u[i]==n-) continue;
u[++top]=u[i],v[top]=v[i];
}
m=top;
for(int i=;i<=m;i++){
for(int j=i+;j<=m;j++){
if((u[i]<u[j]&&v[i]>u[j]&&v[i]<v[j])||(u[i]>u[j]&&v[j]>u[i]&&v[i]>v[j])){
add(*i-,*j);
add(*i,*j-);
add(*j-,*i);
add(*j,*i-);
}
}
}
for(int i=;i<=*m;i++){
if(dfn[i]==){
tarjan(i);
}
}
if(jude()) printf("YES\n");
else printf("NO\n"); }
return ;
}

BZOJ1997 [Hnoi2010]Planar (2-sat)的更多相关文章

  1. [bzoj1997][Hnoi2010]Planar(2-sat||括号序列)

    开始填连通分量的大坑了= = 然后平面图有个性质m<=3*n-6..... 由平面图的欧拉定理n-m+r=2(r为平面图的面的个数),在极大平面图的情况可以代入得到m=3*n-6. 网上的证明( ...

  2. bzoj千题计划231:bzoj1997: [Hnoi2010]Planar

    http://www.lydsy.com/JudgeOnline/problem.php?id=1997 如果两条边在环内相交,那么一定也在环外相交 所以环内相交的两条边,必须一条在环内,一条在环外 ...

  3. [BZOJ1997][Hnoi2010]Planar 2-sat (联通分量) 平面图

    1997: [Hnoi2010]Planar Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2317  Solved: 850[Submit][Stat ...

  4. BZOJ1997 [Hnoi2010]Planar 【2-sat】

    题目链接 BZOJ1997 题解 显然相交的两条边不能同时在圆的一侧,\(2-sat\)判一下就好了 但这样边数是\(O(m^2)\)的,无法通过此题 但是\(n\)很小,平面图 边数上界为\(3n ...

  5. bzoj1997: [Hnoi2010]Planar

    2-SAT. 首先有平面图定理 m<=3*n-6,如果不满足这条件肯定不是平面图,直接退出. 然后构成哈密顿回路的边直接忽略. 把哈密顿回路当成一个圆, 如果俩条边交叉(用心去感受),只能一条边 ...

  6. bzoj1997 [Hnoi2010]Planar——2-SAT

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1997 神奇的经典2-SAT问题! 对于两个相交的区间,只能一里一外连边,所以可以进行2-SA ...

  7. 【BZOJ1997】[Hnoi2010]Planar 2-SAT

    [BZOJ1997][Hnoi2010]Planar Description Input Output Sample Input 2 6 9 1 4 1 5 1 6 2 4 2 5 2 6 3 4 3 ...

  8. bzoj1997 [HNOI2010]平面图判定Plana

    bzoj1997 [HNOI2010]平面图判定Planar 链接 bzoj luogu 思路 好像有很多种方法过去.我只说2-sat 环上的边,要不在里面,要不在外边. 有的边是不能同时在里面的,可 ...

  9. BZOJ 1997: [Hnoi2010]Planar( 2sat )

    平面图中E ≤ V*2-6.. 一个圈上2个点的边可以是在外或者内, 经典的2sat问题.. ----------------------------------------------------- ...

随机推荐

  1. IE6下input标签border问题

    IE6下input标签的border的样式border:none;是不起作用的!要设置border:0px;才行!

  2. NGUI系列教程三

    接下来我们再来看Progress Bar和Slider,对比参数我们可以发现,Progress Bar和slider的明显区别在于slider多一个Thumb选项,这里的Thumb就是我们拖动的时候点 ...

  3. asp.net mvc get controller name and action name

    @{ var controller = @HttpContext.Current.Request.RequestContext.RouteData.Values["controller&qu ...

  4. Shell编程练习

    1.使用case语句 2.使用while....do....done语句 3.使用

  5. C# 发送邮件实例代码

    1.构造附件 static List<Attachment> BuildAttachments(List<EmailFile> files) { ) { return null ...

  6. PHP漏洞全解(九)-文件上传漏洞

    本文主要介绍针对PHP网站文件上传漏洞.由于文件上传功能实现代码没有严格限制用户上传的文件后缀以及文件类型,导致允许攻击者向某个可通过 Web 访问的目录上传任意PHP文件,并能够将这些文件传递给 P ...

  7. Vector 的清空

    前两天比赛有一道题,有用到了vector的清空,用的是swap,我一开始还不太清楚,所以去查了下资料,转载一篇关于vector的清空的. vector <int> vecInt; ; i& ...

  8. simplemodal — jquery弹出窗体插件

    方式一:使用jquery-1.7.1.min.js(1.9.1的版本我试过了,不行) + jquery_modal.js的方式 文件:        testModel.css: /* Overlay ...

  9. PieTTY

    PieTTY 用 pietty 連上主機時 鍵盤右方數字鍵 (keypad) 失效的問題 用 pietty 連上主機時 鍵盤右方數字鍵 (keypad) 失效的問題 應該滿多人用 pietty 連上程 ...

  10. Sql server decimal 和 numeric

    带固定精度和小数位数的数值数据类型. decimal[ (p[ , s] )] 和 numeric[ (p[ , s] )] 固定精度和小数位数.使用最大精度时,有效值从 - 10^38 +1 到 1 ...