一起啃PRML - 1.2.3 Bayesian probabilities 贝叶斯概率

@copyright 转载请注明出处 http://www.cnblogs.com/chxer/

这一节简单讲了最大似然。

回顾贝叶斯公式,我们可以把p(D)用积分的形式表示:

至于最大似然,我在这一章里其实并没有了解什么,那我摘一些大牛的博客吧。

这一篇我觉得至少我懂了。

最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最大。通俗一点讲,就是在什么情况下最有可能发生已知的事件。举个例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少?

我想很多人立马有答案:70%。这个答案是正确的。可是为什么呢?(常识嘛!这还要问?!)其实,在很多常识的背后,都有相应的理论支持。在上面的问题中,就有最大似然法的支持。

我们假设罐中白球的比例是p,那么黑球的比例就是1-p。因为每抽一个球出来,在记录颜色之后,我们把抽出的球放回了罐中并摇匀,所以每次抽出来的球的颜色服从同一独立分布。这里我们把一次抽出来球的颜色称为一次抽样。题目中在一百次抽样中,七十次是白球的概率是P(Data | M),这里Data是所有的数据,M是所给出的模型,表示每次抽出来的球是白色的概率为p。如果第一抽样的结果记为x1,第二抽样的结果记为x2,。。。那么Data = (x1,x2,...,x100)。这样,

P(Data | M)

= P(x1,x2,...,x100|M)

= P(x1|M)P(x2|M)...P(x100|M)

= p^70(1-p)^30.

那么p在取什么值的时候,P(Data |M)的值最大呢?将p^70(1-p)^30对p求导,并其等于零。

70p^69(1-p)^30-p^70*30(1-p)^29=0。

解方程可以得到p=0.7。

在边界点p=0,1,P(Data|M)=0。所以当p=0.7时,P(Data|M)的值最大。这和我们常识中按抽样中的比例来计算的结果是一样的。

于是就解决了。

人生中第一次正式用求导,感觉真是一个好东西。

一起啃PRML - 1.2.3 Bayesian probabilities 贝叶斯概率的更多相关文章

  1. PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)

    主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以 ...

  2. 概率图模型(PGM):贝叶斯网(Bayesian network)初探

    1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界 ...

  3. 一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布

    一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ ...

  4. 一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差

    一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ ...

  5. 一起啃PRML - 1.2.1 Probability densities 概率密度

    一起啃PRML - 1.2.1 Probability densities @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 我们之前一直在讨论“谁取到 ...

  6. 一起啃PRML - 1.2 Probability Theory 概率论

    一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in t ...

  7. 一起啃PRML - 1.1 Example: Polynomial Curve Fitting 多项式曲线拟合

    一起啃PRML - 1.1 Example: Polynomial Curve Fitting @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 前言: ...

  8. 一起啃PRML - 1 Introduction 绪论

    一起啃PRML - 1 Introduction @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 这一部分主要是介绍一下Pattern Recogni ...

  9. 一起啃PRML - Preface 前言

    一起啃PRML - 前言 Preface @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ PRML,Pattern Recognition and M ...

随机推荐

  1. (转)C#中的Dictionary字典类介绍

    关键字:C# Dictionary 字典 作者:txw1958原文:http://www.cnblogs.com/txw1958/archive/2012/11/07/csharp-dictionar ...

  2. Object-C日志记录

    在Object-C中,将日志信息输出到控制台是非常简单的.实际上NSLog()函数很像C语言里面的printf()函数,出了要用一个%@符号代表一个对象. NSLog(@"The curre ...

  3. dbforge studio for mysql 怎样破解

    下载好dbforge studio压缩包有两个exe,dbforge.studio.for.mysql.6.0.315-loader.exe ,和dbforgemysql.exe,安装后目录在C:\P ...

  4. cocos2d-x v3.0的window平台搭建和编译成andriod程序

    首先添加这个地址到系统环境变量,path 然后打开CMD,输入如下语句 现在就可以创建一个新项目了 这样一个空的cocos2d-x v3.0的项目就创建好了 接下来编译andriod程序 先在系统环境 ...

  5. 九度OJ 1525 子串逆序打印 -- 2012年Google校园招聘笔试题目

    题目地址:http://ac.jobdu.com/problem.php?pid=1525 题目描述: 小明手中有很多字符串卡片,每个字符串中都包含有多个连续的空格,而且这些卡片在印刷的过程中将字符串 ...

  6. 九度0J 1374 所有员工年龄排序

    题目地址:http://ac.jobdu.com/problem.php?pid=1374 题目描述: 公司现在要对所有员工的年龄进行排序,因为公司员工的人数非常多,所以要求排序算法的效率要非常高,你 ...

  7. 如何通过CSS让DIV居中对齐

    给Div对应的CSS的添加如下设定即可: MARGIN-RIGHT: auto; MARGIN-LEFT: auto;

  8. python 自动化之路 logging日志模块

    logging 日志模块 http://python.usyiyi.cn/python_278/library/logging.html 中文官方http://blog.csdn.net/zyz511 ...

  9. jquery阻止事件的两种实现方式

    再阻止事件冒泡的方面,jquery有两种方式: 一种是 return false;另外一种是 e.stopPropagation() html代码 <form id="form1&qu ...

  10. PHP异常处理

    一.异常处理——可以有效地控制多条出现错误或异常的代码 基本语法如下: try{ //可能出现异常的代码 } catch(Exception $e){ //对异常处理 //1.自己处理 //2.不作处 ...