一起啃PRML - 1.2.3 Bayesian probabilities 贝叶斯概率

@copyright 转载请注明出处 http://www.cnblogs.com/chxer/

这一节简单讲了最大似然。

回顾贝叶斯公式,我们可以把p(D)用积分的形式表示:

至于最大似然,我在这一章里其实并没有了解什么,那我摘一些大牛的博客吧。

这一篇我觉得至少我懂了。

最大似然法是要解决这样一个问题:给定一组数据和一个参数待定的模型,如何确定模型的参数,使得这个确定参数后的模型在所有模型中产生已知数据的概率最大。通俗一点讲,就是在什么情况下最有可能发生已知的事件。举个例子,假如有一个罐子,里面有黑白两种颜色的球,数目多少不知,两种颜色的比例也不知。我们想知道罐中白球和黑球的比例,但我们不能把罐中的球全部拿出来数。现在我们可以每次任意从已经摇匀的罐中拿一个球出来,记录球的颜色,然后把拿出来的球再放回罐中。这个过程可以重复,我们可以用记录的球的颜色来估计罐中黑白球的比例。假如在前面的一百次重复记录中,有七十次是白球,请问罐中白球所占的比例最有可能是多少?

我想很多人立马有答案:70%。这个答案是正确的。可是为什么呢?(常识嘛!这还要问?!)其实,在很多常识的背后,都有相应的理论支持。在上面的问题中,就有最大似然法的支持。

我们假设罐中白球的比例是p,那么黑球的比例就是1-p。因为每抽一个球出来,在记录颜色之后,我们把抽出的球放回了罐中并摇匀,所以每次抽出来的球的颜色服从同一独立分布。这里我们把一次抽出来球的颜色称为一次抽样。题目中在一百次抽样中,七十次是白球的概率是P(Data | M),这里Data是所有的数据,M是所给出的模型,表示每次抽出来的球是白色的概率为p。如果第一抽样的结果记为x1,第二抽样的结果记为x2,。。。那么Data = (x1,x2,...,x100)。这样,

P(Data | M)

= P(x1,x2,...,x100|M)

= P(x1|M)P(x2|M)...P(x100|M)

= p^70(1-p)^30.

那么p在取什么值的时候,P(Data |M)的值最大呢?将p^70(1-p)^30对p求导,并其等于零。

70p^69(1-p)^30-p^70*30(1-p)^29=0。

解方程可以得到p=0.7。

在边界点p=0,1,P(Data|M)=0。所以当p=0.7时,P(Data|M)的值最大。这和我们常识中按抽样中的比例来计算的结果是一样的。

于是就解决了。

人生中第一次正式用求导,感觉真是一个好东西。

一起啃PRML - 1.2.3 Bayesian probabilities 贝叶斯概率的更多相关文章

  1. PRML读书会第四章 Linear Models for Classification(贝叶斯marginalization、Fisher线性判别、感知机、概率生成和判别模型、逻辑回归)

    主讲人 planktonli planktonli(1027753147) 19:52:28 现在我们就开始讲第四章,第四章的内容是关于 线性分类模型,主要内容有四点:1) Fisher准则的分类,以 ...

  2. 概率图模型(PGM):贝叶斯网(Bayesian network)初探

    1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界 ...

  3. 一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布

    一起啃PRML - 1.2.4 The Gaussian distribution 高斯分布 正态分布 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ ...

  4. 一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差

    一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差 @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ ...

  5. 一起啃PRML - 1.2.1 Probability densities 概率密度

    一起啃PRML - 1.2.1 Probability densities @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 我们之前一直在讨论“谁取到 ...

  6. 一起啃PRML - 1.2 Probability Theory 概率论

    一起啃PRML - 1.2 Probability Theory @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ A key concept in t ...

  7. 一起啃PRML - 1.1 Example: Polynomial Curve Fitting 多项式曲线拟合

    一起啃PRML - 1.1 Example: Polynomial Curve Fitting @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 前言: ...

  8. 一起啃PRML - 1 Introduction 绪论

    一起啃PRML - 1 Introduction @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 这一部分主要是介绍一下Pattern Recogni ...

  9. 一起啃PRML - Preface 前言

    一起啃PRML - 前言 Preface @copyright 转载请注明出处 http://www.cnblogs.com/chxer/ PRML,Pattern Recognition and M ...

随机推荐

  1. C++ 变量转换

    atoi,atol,strtod,strtol,strtoul实现类型转换2006-02-13 版权声明:转载时请以超链接形式标明文章原始出处和作者信息及本声明http://ivanvic.blogb ...

  2. javascript——四种函数调用形式

    此文的目的是分析函数的四种调用形式,弄清楚函数中this的意义,明确构造函对象的过程,学会使用上下文调用函数. 在JavaScript中,函数是一等公民,函数在JavaScript中是一个数据类型,而 ...

  3. 九度OJ 1361 翻转单词顺序

    题目地址:http://ac.jobdu.com/problem.php?pid=1361 题目描述: JOBDU最近来了一个新员工Fish,每天早晨总是会拿着一本英文杂志,写些句子在本子上.同事Ca ...

  4. jQuery弹出层_点击自身以外地方关闭弹出层

    <html> <style> .hide{display:none;} </style> <script type="text/javascript ...

  5. important的妙用

    !important: 为某些样式设置具有最高权值,高于id选择器 用法: !important要写在分号的前面 例如: <p class="first">!impor ...

  6. Ajax--1

    1.Ajax:组合利用javascript.XML和DOM等技术,在无需要刷新页面的前提下实现浏览器与服务器通信.它在用户和服务器之间引入了一个中间层,负责转发用户界面和服务器之间的交互.在服务器处理 ...

  7. demo_08webStroage案例

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  8. php练习7——类的运用(四则运算or面积计算[javascript小技巧——根据需求显示不同界面])

    要求:请编写一个类,该类可以进行四则运算,也可以进行矩形面积计算 1.程序 viewCount.html  Count.class.php      printCount.php 2.结果      ...

  9. Sass中的Map 详解

    Sass中的Map长什么样 Sass 的 map 常常被称为数据地图,也有人称其为数组,因为他总是以 key:value 成对的出现, Sass 的 map 长得与 JSON 极其相似. json: ...

  10. 查看 MySQL 数据库中每个表占用的空间大小

    TABLE_SCHEMA : 数据库名TABLE_NAME:表名ENGINE:所使用的存储引擎TABLES_ROWS:记录数DATA_LENGTH:数据大小INDEX_LENGTH:索引大小 SELE ...