描述


http://poj.org/problem?id=3068

危险品:N个仓库由M条有向边连接,每条边都有一定费用。将两种危险品从0运到N-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。求最小费用.

(好吧直接抄来的0.0)

"Shortest" pair of paths
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 1220   Accepted: 493

Description

A chemical company has an unusual shortest path problem.

There are N depots (vertices) where chemicals can be stored. There
are M individual shipping methods (edges) connecting pairs of depots.
Each individual shipping method has a cost. In the usual problem, the
company would need to find a way to route a single shipment from the
first depot (0) to the last (N - 1). That's easy. The problem they have
seems harder. They have to ship two chemicals from the first depot (0)
to the last (N - 1). The chemicals are dangerous and cannot safely be
placed together. The regulations say the company cannot use the same
shipping method for both chemicals. Further, the company cannot place
the two chemicals in same depot (for any length of time) without special
storage handling --- available only at the first and last depots. To
begin, they need to know if it's possible to ship both chemicals under
these constraints. Next, they need to find the least cost of shipping
both chemicals from first depot to the last depot. In brief, they need
two completely separate paths (from the first depot to the last) where
the overall cost of both is minimal.

Your program must simply determine the minimum cost or, if it's not
possible, conclusively state that the shipment cannot be made.

Input

The
input will consist of multiple cases. The first line of each input will
contain N and M where N is the number of depots and M is the number of
individual shipping methods. You may assume that N is less than 64 and
that M is less than 10000. The next M lines will contain three values,
i, j, and v. Each line corresponds a single, unique shipping method. The
values i and j are the indices of two depots, and v is the cost of
getting from i to j. Note that these shipping methods are directed. If
something can be shipped from i to j with cost 10, that says nothing
about shipping from j to i. Also, there may be more than one way to ship
between any pair of depots, and that may be important here.

A line containing two zeroes signals the end of data and should not be processed.

Output

follow the output format of sample output.

Sample Input

2 1
0 1 20
2 3
0 1 20
0 1 20
1 0 10
4 6
0 1 22
1 3 11
0 2 14
2 3 26
0 3 43
0 3 58
0 0

Sample Output

Instance #1: Not possible
Instance #2: 40
Instance #3: 73

Source

分析


每个边的容量都是1,增加一个源点与汇点,与他们相连的边容量是2,费用是0.然后跑最小费用流即可.

注意:

1.加爆了什么的...好吧只有我才会犯这种智障错(撞墙).

ps.人生第一道最小费用流的题.还有两个月就NOI了,感觉这节奏不死真难.

 #include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
#define rep(i,n) for(int i=0;i<(n);i++)
#define for1(i,a,n) for(int i=(a);i<=(n);i++)
#define read(a) a=getnum()
#define CC(i,a) memset(i,a,sizeof(i))
using namespace std; const int maxn=+,INF=<<;
int n,m;
bool vis[maxn];
int dis[maxn],prevv[maxn],preve[maxn];
struct edge
{
int to,cap,cost,rev;
edge(){}
edge(int a,int b,int c,int d):to(a),cap(b),cost(c),rev(d) {}
};
vector <edge> g[maxn]; inline int getnum()
{
int r=,k=; char c;
for(c=getchar();c<''||c>'';c=getchar()) if(c=='-') k=-;
for(;c>=''&&c<='';c=getchar()) r=r*+c-'';
return k*r;
} void add_edge(int from,int to,int cap,int cost)
{
g[from].push_back(edge(to,cap,cost,g[to].size()));
g[to].push_back(edge(from,,-cost,g[from].size()-));
} void Spfa(int s)
{
for1(i,,n+) dis[i]=INF;
dis[s]=;
CC(vis,);
queue <int> q;
q.push(s);
vis[s]=true;
while(!q.empty())
{
int t=q.front(); q.pop();
vis[t]=false;
rep(i,g[t].size())
{
edge e=g[t][i];
if(e.cap>&&dis[e.to]-e.cost>dis[t])
{
dis[e.to]=dis[t]+e.cost;
prevv[e.to]=t;
preve[e.to]=i;
if(!vis[e.to])
{
vis[e.to]=true;
q.push(e.to);
}
}
}
}
} int min_cost_flow(int s,int t,int f)
{
int res=;
while(f>)
{
Spfa(s);
if(dis[t]==INF) return -;
int d=f;
for(int v=t;v!=s;v=prevv[v])
{
d=min(d,g[prevv[v]][preve[v]].cap);
}
f-=d;
res+=d*dis[t];
for(int v=t;v!=s;v=prevv[v])
{
edge &e=g[prevv[v]][preve[v]];
e.cap-=d;
g[v][e.rev].cap+=d;
}
}
return res;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("short.in","r",stdin);
freopen("short.out","w",stdout);
#endif
int cnt=;
while(scanf("%d%d",&n,&m)==&&(n!=||m!=))
{
for1(i,,m)
{
int from,to,cost;
read(from); read(to); read(cost);
from++; to++;
add_edge(from,to,,cost);
}
add_edge(,,,);
add_edge(n,n+,,);
printf("Instance #%d: ",++cnt);
int ans=min_cost_flow(,n+,);
if(ans==-)
{
printf("Not possible\n");
}
else
{
printf("%d\n",ans);
}
for1(i,,n+) g[i].clear();
}
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
system("short.out");
#endif
return ;
}

POJ_3068_Shortest_pair_of_paths_(最小费用流)的更多相关文章

  1. POJ2195 最小费用流

    题目:http://poj.org/problem?id=2195 处理出每个人到每个门的曼哈顿距离,分别建立容量为1费用为曼哈顿距离的边,在源点和每个人人之间建立容量为1费用为0的边,在门和汇点之间 ...

  2. HDU 4067 hdoj 4067 Random Maze 最小费用流

    给出n个点,m条边,入口s和出口t,对于每条边有两个值a,b,如果保留这条边需要花费:否则,移除这条边需要花费b. 题目要求用最小费用构造一个有向图满足以下条件: 1.只有一个入口和出口 2.所有路都 ...

  3. POJ 2516:Minimum Cost(最小费用流)

    https://vjudge.net/problem/11079/origin 题意:有N个商店和M个供应商和K种物品,每个商店每种物品有一个需求数,每个供应商每种物品有一个供应量,供应商到商店之间的 ...

  4. POJ-2175 Evacuation Plan 最小费用流、负环判定

    题意:给定一个最小费用流的模型,根据给定的数据判定是否为最优解,如果不为最优解则给出一个比给定更优的解即可.不需要得出最优解. 解法:由给定的数据能够得出一个残图,且这个图满足了最大流的性质,判定一个 ...

  5. Going Home (hdu 1533 最小费用流)

    集训的图论都快结束了,我才看懂了最小费用流,惭愧啊. = = 但是今天机械键盘到了,有弄好了自行车,好高兴\(^o^)/~ 其实也不是看懂,就会套个模板而已.... 这题最重要的就是一个: 多组输入一 ...

  6. POJ 2195 Going Home 最小费用流 裸题

    给出一个n*m的图,其中m是人,H是房子,.是空地,满足人的个数等于房子数. 现在让每个人都选择一个房子住,每个人只能住一间,每一间只能住一个人. 每个人可以向4个方向移动,每移动一步需要1$,问所有 ...

  7. [haoi2010]订货 最小费用流

    这道题oj上的标签是动态规划,但我想不出来动态规划怎么搞,空间不爆,时间也要爆的: 好的,不扯淡,此题正常做法是最小费用流: 这道题我写了两遍,为什么呢?原因是第一次写的时候,不会写费用流,又恰好没带 ...

  8. FZU2143Board Game(最小费用流)

    题目大意是说有一个B矩阵,现在A是一个空矩阵(每个元素都为0),每次操作可以将A矩阵相邻的两个元素同时+1,但是有个要求就是A矩阵的每个元素都不可以超过K,求 这个的最小值 解题思路是这样的,新建起点 ...

  9. POJ 2516 Minimum Cost 最小费用流

    题目: 给出n*kk的矩阵,格子a[i][k]表示第i个客户需要第k种货物a[i][k]单位. 给出m*kk的矩阵,格子b[j][k]表示第j个供应商可以提供第k种货物b[j][k]单位. 再给出k个 ...

随机推荐

  1. ios专题 -KVO , KVC

    KVO,即:Key-Value Observing,它提供一种机制,当指定的对象的属性被修改后,则对象就会接受到通知. addObserver:  forKeyPath: options: conte ...

  2. (转)linux多线程,线程的分离与结合

    转自:http://www.cnblogs.com/mydomain/archive/2011/08/14/2138454.htm 线程的分离与结合     在任何一个时间点上,线程是可结合的(joi ...

  3. Service Reference

    1 Add Web Reference    根据wsdl文件,按照老的asp.net webservice客户访问机制,生成webservice代理类的方法,即从System.Web.Service ...

  4. NPOI_2.1.3-Excel中设置小数、百分比、货币、日期、科学计数法和金额大写

    在操作Excel时候一些特殊值的转换是在所难免的,下面就给出转换方法大同小异,代码如下: HSSFWorkbook hssfWorkbook = new HSSFWorkbook(); ISheet ...

  5. 一次ora-1113 记录

    记录博客园的第一天,今天在电脑前发呆,突然感觉自己记忆越来越差,近年来随着工作力度的加强,感觉自己越来越力不从心,问题重复的出现.感觉自己应该去记录点什么了,随选择了用写博客的方式记录一下.第一天先记 ...

  6. MySQL存储引擎,优化,事务

    1唯一约束unique和主键key的区别?     1.什么是数据的存储引擎?       存储引擎就是如何存储数据.如何为存储的数据建立索引和如何更新.查询数据等技术的实现方法.因为在关系数据库中数 ...

  7. express的基本配置项

    express自动生成的app.js中有一段代码用app.set和app.use对express进行配置,但这些配置都是什么意思,以及都能做哪些配置并没有展开.这一节就专门来讲express的配置.上 ...

  8. html5 API

    1.Canvas绘图 2.postMessage跨域.多窗口传输 3.requestAnimationFrame动画 4.PageVisibility API页面可见性 5.File 本地文件操作 6 ...

  9. 向OC类中添加默认的协议实现(ProtocolKit)

    以forkingdog的PorotocolKit举例 举例 ProtocolKit Protocol extension for Objective-C Usage Your protocol: @p ...

  10. iOS - 发送邮件

    IOS系统框架提供的两种发送Email的方法:openURL 和 MFMailComposeViewController.借助这两个方法,我们可以轻松的在应用里加入如用户反馈这类需要发送邮件的功能. ...