描述


http://poj.org/problem?id=3068

危险品:N个仓库由M条有向边连接,每条边都有一定费用。将两种危险品从0运到N-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。求最小费用.

(好吧直接抄来的0.0)

"Shortest" pair of paths
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 1220   Accepted: 493

Description

A chemical company has an unusual shortest path problem.

There are N depots (vertices) where chemicals can be stored. There
are M individual shipping methods (edges) connecting pairs of depots.
Each individual shipping method has a cost. In the usual problem, the
company would need to find a way to route a single shipment from the
first depot (0) to the last (N - 1). That's easy. The problem they have
seems harder. They have to ship two chemicals from the first depot (0)
to the last (N - 1). The chemicals are dangerous and cannot safely be
placed together. The regulations say the company cannot use the same
shipping method for both chemicals. Further, the company cannot place
the two chemicals in same depot (for any length of time) without special
storage handling --- available only at the first and last depots. To
begin, they need to know if it's possible to ship both chemicals under
these constraints. Next, they need to find the least cost of shipping
both chemicals from first depot to the last depot. In brief, they need
two completely separate paths (from the first depot to the last) where
the overall cost of both is minimal.

Your program must simply determine the minimum cost or, if it's not
possible, conclusively state that the shipment cannot be made.

Input

The
input will consist of multiple cases. The first line of each input will
contain N and M where N is the number of depots and M is the number of
individual shipping methods. You may assume that N is less than 64 and
that M is less than 10000. The next M lines will contain three values,
i, j, and v. Each line corresponds a single, unique shipping method. The
values i and j are the indices of two depots, and v is the cost of
getting from i to j. Note that these shipping methods are directed. If
something can be shipped from i to j with cost 10, that says nothing
about shipping from j to i. Also, there may be more than one way to ship
between any pair of depots, and that may be important here.

A line containing two zeroes signals the end of data and should not be processed.

Output

follow the output format of sample output.

Sample Input

2 1
0 1 20
2 3
0 1 20
0 1 20
1 0 10
4 6
0 1 22
1 3 11
0 2 14
2 3 26
0 3 43
0 3 58
0 0

Sample Output

Instance #1: Not possible
Instance #2: 40
Instance #3: 73

Source

分析


每个边的容量都是1,增加一个源点与汇点,与他们相连的边容量是2,费用是0.然后跑最小费用流即可.

注意:

1.加爆了什么的...好吧只有我才会犯这种智障错(撞墙).

ps.人生第一道最小费用流的题.还有两个月就NOI了,感觉这节奏不死真难.

 #include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
#define rep(i,n) for(int i=0;i<(n);i++)
#define for1(i,a,n) for(int i=(a);i<=(n);i++)
#define read(a) a=getnum()
#define CC(i,a) memset(i,a,sizeof(i))
using namespace std; const int maxn=+,INF=<<;
int n,m;
bool vis[maxn];
int dis[maxn],prevv[maxn],preve[maxn];
struct edge
{
int to,cap,cost,rev;
edge(){}
edge(int a,int b,int c,int d):to(a),cap(b),cost(c),rev(d) {}
};
vector <edge> g[maxn]; inline int getnum()
{
int r=,k=; char c;
for(c=getchar();c<''||c>'';c=getchar()) if(c=='-') k=-;
for(;c>=''&&c<='';c=getchar()) r=r*+c-'';
return k*r;
} void add_edge(int from,int to,int cap,int cost)
{
g[from].push_back(edge(to,cap,cost,g[to].size()));
g[to].push_back(edge(from,,-cost,g[from].size()-));
} void Spfa(int s)
{
for1(i,,n+) dis[i]=INF;
dis[s]=;
CC(vis,);
queue <int> q;
q.push(s);
vis[s]=true;
while(!q.empty())
{
int t=q.front(); q.pop();
vis[t]=false;
rep(i,g[t].size())
{
edge e=g[t][i];
if(e.cap>&&dis[e.to]-e.cost>dis[t])
{
dis[e.to]=dis[t]+e.cost;
prevv[e.to]=t;
preve[e.to]=i;
if(!vis[e.to])
{
vis[e.to]=true;
q.push(e.to);
}
}
}
}
} int min_cost_flow(int s,int t,int f)
{
int res=;
while(f>)
{
Spfa(s);
if(dis[t]==INF) return -;
int d=f;
for(int v=t;v!=s;v=prevv[v])
{
d=min(d,g[prevv[v]][preve[v]].cap);
}
f-=d;
res+=d*dis[t];
for(int v=t;v!=s;v=prevv[v])
{
edge &e=g[prevv[v]][preve[v]];
e.cap-=d;
g[v][e.rev].cap+=d;
}
}
return res;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("short.in","r",stdin);
freopen("short.out","w",stdout);
#endif
int cnt=;
while(scanf("%d%d",&n,&m)==&&(n!=||m!=))
{
for1(i,,m)
{
int from,to,cost;
read(from); read(to); read(cost);
from++; to++;
add_edge(from,to,,cost);
}
add_edge(,,,);
add_edge(n,n+,,);
printf("Instance #%d: ",++cnt);
int ans=min_cost_flow(,n+,);
if(ans==-)
{
printf("Not possible\n");
}
else
{
printf("%d\n",ans);
}
for1(i,,n+) g[i].clear();
}
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
system("short.out");
#endif
return ;
}

POJ_3068_Shortest_pair_of_paths_(最小费用流)的更多相关文章

  1. POJ2195 最小费用流

    题目:http://poj.org/problem?id=2195 处理出每个人到每个门的曼哈顿距离,分别建立容量为1费用为曼哈顿距离的边,在源点和每个人人之间建立容量为1费用为0的边,在门和汇点之间 ...

  2. HDU 4067 hdoj 4067 Random Maze 最小费用流

    给出n个点,m条边,入口s和出口t,对于每条边有两个值a,b,如果保留这条边需要花费:否则,移除这条边需要花费b. 题目要求用最小费用构造一个有向图满足以下条件: 1.只有一个入口和出口 2.所有路都 ...

  3. POJ 2516:Minimum Cost(最小费用流)

    https://vjudge.net/problem/11079/origin 题意:有N个商店和M个供应商和K种物品,每个商店每种物品有一个需求数,每个供应商每种物品有一个供应量,供应商到商店之间的 ...

  4. POJ-2175 Evacuation Plan 最小费用流、负环判定

    题意:给定一个最小费用流的模型,根据给定的数据判定是否为最优解,如果不为最优解则给出一个比给定更优的解即可.不需要得出最优解. 解法:由给定的数据能够得出一个残图,且这个图满足了最大流的性质,判定一个 ...

  5. Going Home (hdu 1533 最小费用流)

    集训的图论都快结束了,我才看懂了最小费用流,惭愧啊. = = 但是今天机械键盘到了,有弄好了自行车,好高兴\(^o^)/~ 其实也不是看懂,就会套个模板而已.... 这题最重要的就是一个: 多组输入一 ...

  6. POJ 2195 Going Home 最小费用流 裸题

    给出一个n*m的图,其中m是人,H是房子,.是空地,满足人的个数等于房子数. 现在让每个人都选择一个房子住,每个人只能住一间,每一间只能住一个人. 每个人可以向4个方向移动,每移动一步需要1$,问所有 ...

  7. [haoi2010]订货 最小费用流

    这道题oj上的标签是动态规划,但我想不出来动态规划怎么搞,空间不爆,时间也要爆的: 好的,不扯淡,此题正常做法是最小费用流: 这道题我写了两遍,为什么呢?原因是第一次写的时候,不会写费用流,又恰好没带 ...

  8. FZU2143Board Game(最小费用流)

    题目大意是说有一个B矩阵,现在A是一个空矩阵(每个元素都为0),每次操作可以将A矩阵相邻的两个元素同时+1,但是有个要求就是A矩阵的每个元素都不可以超过K,求 这个的最小值 解题思路是这样的,新建起点 ...

  9. POJ 2516 Minimum Cost 最小费用流

    题目: 给出n*kk的矩阵,格子a[i][k]表示第i个客户需要第k种货物a[i][k]单位. 给出m*kk的矩阵,格子b[j][k]表示第j个供应商可以提供第k种货物b[j][k]单位. 再给出k个 ...

随机推荐

  1. WPF-TxtBox控件利用KeyDown来控制键盘输入

    private void TextBox_PreviewKeyDown(object sender, KeyEventArgs e)        {            TextBox txt = ...

  2. EasyUI兼容IE问题

    上网搜了下,发现说明白的解决方案不多,于是记录了一下: 根本原因是JQuery的版本造成IE8及以下兼容的问题,(由于EasyUI是基于JQuery框架的,而JQuery貌似从2013年为了简洁代码, ...

  3. MYSQL的全表扫描,主键索引(聚集索引、第一索引),非主键索引(非聚集索引、第二索引),覆盖索引四种不同查询的分析

    文章出处:http://inter12.iteye.com/blog/1430144 MYSQL的全表扫描,主键索引(聚集索引.第一索引),非主键索引(非聚集索引.第二索引),覆盖索引四种不同查询的分 ...

  4. mybatis 打印 sql

    该文中使用的log框架为logback myBatis3.0.6左右的版本时 打印sql的时候只需要配置如下属性: <logger name="java.sql.Connection& ...

  5. Xcode中需要熟悉的常用快捷键

    因为工作需要,笔者最近开始接触Xcode这款Mac系统下的强大的编程软件.因为个人习惯,每当接触新的软件的时候总会先去了解它的一些常用快捷键.经过多方查阅总结出以下内容,希望对刚刚接触Xcode的初学 ...

  6. struts2基于Convention插件的约定映射使用

    一.首先说明一点:所谓的基于Convention插件的约定优于配置的使用,并不是严格意义上的零配置,struts.xml文件并不能完全舍弃. 获得Convention插件功能,所必需的jar包有:|a ...

  7. LA 3708 Graveyard(推理 参考系 中位数)

    Graveyard Programming contests became so popular in the year 2397 that the governor of New Earck -- ...

  8. 对C++ Primer的10.3.9单词转换的思考

    这篇代码有几个知识点可以复习一下,而且小白学到了新知识o(╯□╰)o #include <iostream> #include <string> #include <ma ...

  9. 理解Java中的前期绑定和后期绑定

    前期绑定,在程序执行前根据编译时类型绑定,调用开销较小,如C语言只有前期绑定这种方法调用. 后期绑定,是指在运行时根据对象的类型进行绑定,又叫动态绑定或运行时绑定.实现后期绑定,需要某种机制支持,以便 ...

  10. 记录创建企业Wiki的几个开源项目

    很多著名的企业Wiki都是开源产品,如Foswiki(基于Perl),TWiki(基于Perl)等,另外有Mindtouch(基于PHP, C#),Confluence(基于Java)等.维基道的Wi ...