POJ_3068_Shortest_pair_of_paths_(最小费用流)
描述
http://poj.org/problem?id=3068
危险品:N个仓库由M条有向边连接,每条边都有一定费用。将两种危险品从0运到N-1,除了起点和终点外,危险品不能放在一起,也不能走相同的路径。求最小费用.
(好吧直接抄来的0.0)
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 1220 | Accepted: 493 |
Description
There are N depots (vertices) where chemicals can be stored. There
are M individual shipping methods (edges) connecting pairs of depots.
Each individual shipping method has a cost. In the usual problem, the
company would need to find a way to route a single shipment from the
first depot (0) to the last (N - 1). That's easy. The problem they have
seems harder. They have to ship two chemicals from the first depot (0)
to the last (N - 1). The chemicals are dangerous and cannot safely be
placed together. The regulations say the company cannot use the same
shipping method for both chemicals. Further, the company cannot place
the two chemicals in same depot (for any length of time) without special
storage handling --- available only at the first and last depots. To
begin, they need to know if it's possible to ship both chemicals under
these constraints. Next, they need to find the least cost of shipping
both chemicals from first depot to the last depot. In brief, they need
two completely separate paths (from the first depot to the last) where
the overall cost of both is minimal.
Your program must simply determine the minimum cost or, if it's not
possible, conclusively state that the shipment cannot be made.
Input
input will consist of multiple cases. The first line of each input will
contain N and M where N is the number of depots and M is the number of
individual shipping methods. You may assume that N is less than 64 and
that M is less than 10000. The next M lines will contain three values,
i, j, and v. Each line corresponds a single, unique shipping method. The
values i and j are the indices of two depots, and v is the cost of
getting from i to j. Note that these shipping methods are directed. If
something can be shipped from i to j with cost 10, that says nothing
about shipping from j to i. Also, there may be more than one way to ship
between any pair of depots, and that may be important here.
A line containing two zeroes signals the end of data and should not be processed.
Output
Sample Input
2 1
0 1 20
2 3
0 1 20
0 1 20
1 0 10
4 6
0 1 22
1 3 11
0 2 14
2 3 26
0 3 43
0 3 58
0 0
Sample Output
Instance #1: Not possible
Instance #2: 40
Instance #3: 73
Source
分析
每个边的容量都是1,增加一个源点与汇点,与他们相连的边容量是2,费用是0.然后跑最小费用流即可.
注意:
1.加爆了什么的...好吧只有我才会犯这种智障错(撞墙).
ps.人生第一道最小费用流的题.还有两个月就NOI了,感觉这节奏不死真难.
#include<cstdio>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
#define rep(i,n) for(int i=0;i<(n);i++)
#define for1(i,a,n) for(int i=(a);i<=(n);i++)
#define read(a) a=getnum()
#define CC(i,a) memset(i,a,sizeof(i))
using namespace std; const int maxn=+,INF=<<;
int n,m;
bool vis[maxn];
int dis[maxn],prevv[maxn],preve[maxn];
struct edge
{
int to,cap,cost,rev;
edge(){}
edge(int a,int b,int c,int d):to(a),cap(b),cost(c),rev(d) {}
};
vector <edge> g[maxn]; inline int getnum()
{
int r=,k=; char c;
for(c=getchar();c<''||c>'';c=getchar()) if(c=='-') k=-;
for(;c>=''&&c<='';c=getchar()) r=r*+c-'';
return k*r;
} void add_edge(int from,int to,int cap,int cost)
{
g[from].push_back(edge(to,cap,cost,g[to].size()));
g[to].push_back(edge(from,,-cost,g[from].size()-));
} void Spfa(int s)
{
for1(i,,n+) dis[i]=INF;
dis[s]=;
CC(vis,);
queue <int> q;
q.push(s);
vis[s]=true;
while(!q.empty())
{
int t=q.front(); q.pop();
vis[t]=false;
rep(i,g[t].size())
{
edge e=g[t][i];
if(e.cap>&&dis[e.to]-e.cost>dis[t])
{
dis[e.to]=dis[t]+e.cost;
prevv[e.to]=t;
preve[e.to]=i;
if(!vis[e.to])
{
vis[e.to]=true;
q.push(e.to);
}
}
}
}
} int min_cost_flow(int s,int t,int f)
{
int res=;
while(f>)
{
Spfa(s);
if(dis[t]==INF) return -;
int d=f;
for(int v=t;v!=s;v=prevv[v])
{
d=min(d,g[prevv[v]][preve[v]].cap);
}
f-=d;
res+=d*dis[t];
for(int v=t;v!=s;v=prevv[v])
{
edge &e=g[prevv[v]][preve[v]];
e.cap-=d;
g[v][e.rev].cap+=d;
}
}
return res;
} int main()
{
#ifndef ONLINE_JUDGE
freopen("short.in","r",stdin);
freopen("short.out","w",stdout);
#endif
int cnt=;
while(scanf("%d%d",&n,&m)==&&(n!=||m!=))
{
for1(i,,m)
{
int from,to,cost;
read(from); read(to); read(cost);
from++; to++;
add_edge(from,to,,cost);
}
add_edge(,,,);
add_edge(n,n+,,);
printf("Instance #%d: ",++cnt);
int ans=min_cost_flow(,n+,);
if(ans==-)
{
printf("Not possible\n");
}
else
{
printf("%d\n",ans);
}
for1(i,,n+) g[i].clear();
}
#ifndef ONLINE_JUDGE
fclose(stdin);
fclose(stdout);
system("short.out");
#endif
return ;
}
POJ_3068_Shortest_pair_of_paths_(最小费用流)的更多相关文章
- POJ2195 最小费用流
题目:http://poj.org/problem?id=2195 处理出每个人到每个门的曼哈顿距离,分别建立容量为1费用为曼哈顿距离的边,在源点和每个人人之间建立容量为1费用为0的边,在门和汇点之间 ...
- HDU 4067 hdoj 4067 Random Maze 最小费用流
给出n个点,m条边,入口s和出口t,对于每条边有两个值a,b,如果保留这条边需要花费:否则,移除这条边需要花费b. 题目要求用最小费用构造一个有向图满足以下条件: 1.只有一个入口和出口 2.所有路都 ...
- POJ 2516:Minimum Cost(最小费用流)
https://vjudge.net/problem/11079/origin 题意:有N个商店和M个供应商和K种物品,每个商店每种物品有一个需求数,每个供应商每种物品有一个供应量,供应商到商店之间的 ...
- POJ-2175 Evacuation Plan 最小费用流、负环判定
题意:给定一个最小费用流的模型,根据给定的数据判定是否为最优解,如果不为最优解则给出一个比给定更优的解即可.不需要得出最优解. 解法:由给定的数据能够得出一个残图,且这个图满足了最大流的性质,判定一个 ...
- Going Home (hdu 1533 最小费用流)
集训的图论都快结束了,我才看懂了最小费用流,惭愧啊. = = 但是今天机械键盘到了,有弄好了自行车,好高兴\(^o^)/~ 其实也不是看懂,就会套个模板而已.... 这题最重要的就是一个: 多组输入一 ...
- POJ 2195 Going Home 最小费用流 裸题
给出一个n*m的图,其中m是人,H是房子,.是空地,满足人的个数等于房子数. 现在让每个人都选择一个房子住,每个人只能住一间,每一间只能住一个人. 每个人可以向4个方向移动,每移动一步需要1$,问所有 ...
- [haoi2010]订货 最小费用流
这道题oj上的标签是动态规划,但我想不出来动态规划怎么搞,空间不爆,时间也要爆的: 好的,不扯淡,此题正常做法是最小费用流: 这道题我写了两遍,为什么呢?原因是第一次写的时候,不会写费用流,又恰好没带 ...
- FZU2143Board Game(最小费用流)
题目大意是说有一个B矩阵,现在A是一个空矩阵(每个元素都为0),每次操作可以将A矩阵相邻的两个元素同时+1,但是有个要求就是A矩阵的每个元素都不可以超过K,求 这个的最小值 解题思路是这样的,新建起点 ...
- POJ 2516 Minimum Cost 最小费用流
题目: 给出n*kk的矩阵,格子a[i][k]表示第i个客户需要第k种货物a[i][k]单位. 给出m*kk的矩阵,格子b[j][k]表示第j个供应商可以提供第k种货物b[j][k]单位. 再给出k个 ...
随机推荐
- 通过javascript库JQuery实现页面跳转功能代码
通过javascript库JQuery实现页面跳转功能代码的四段代码实例如下. 实例1: 1 2 3 4 $(function(){ var pn = $("#gotopagenum&quo ...
- Java I/O重定向
1.输入重定向 命令行:java [java类文件] < [输入文件路径名] 代码:InputStream inputStream = new FileInputStream( ...
- JavaScript之Function类型
1. 创建方式 //1.函数声明 function sum(num1,num2){ return num1+num2; } //2.函数表达式 var sum = function(num1,num2 ...
- Xcode 7 支持http请求info.plist设置
由于iOS9改用更安全的https,为了能够在iOS9中正常使用http发送网络请求,请在"Info.plist"中进行如下配置,否则影响SDK的使用. 1.找到项目中的 Info ...
- java.lang.Exception: Socket bind failed 服务器端口冲突-->修改端口
需要修改三个端口号:%apache_tomcat6%/conf/server.xml 四月 11, 2014 11:39:25 上午 org.apache.catalina.core.AprLifec ...
- gcc命令以及makefile文件
(一)makefile里涉及到的gcc命令 gcc -I./inc:指定头文件寻找目录 将按照 ./inc --> /usr/include --> /usr/local/include的 ...
- MySQL主从同步原理 部署【转】
一.主从的作用:1.可以当做一种备份方式2.用来实现读写分离,缓解一个数据库的压力二.MySQL主从备份原理master 上提供binlog ,slave 通过 I/O线程从 master拿取 bin ...
- 对React的理解
转自:http://www.cocoachina.com/webapp/20150721/12692.html 现在最热门的前端框架有AngularJS.React.Bootstrap等.自从接触了R ...
- svn-添加忽略文件
svn ps svn:ignore '文件夹名|文件名(不能是文件夹/文件名)' . svn pe svn:ignore . export SVN_EDITOR=/usr/bin/vim #设置环境变 ...
- 禁止选择文本和禁用右键 v3.0
禁止选中字体(注:在火狐浏览器没有起到效果作用) <script> function disableselect(e) { var omitformtags = ["input& ...