Problem:

Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from start to end, such that:

  1. Only one letter can be changed at a time
  2. Each intermediate word must exist in the dictionary

For example,

Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]

Return

  [
["hit","hot","dot","dog","cog"],
["hit","hot","lot","log","cog"]
]

Note:

  • All words have the same length.
  • All words contain only lowercase alphabetic characters.

Analysis:

As we have analyzed in the Word Ladder simple version, the out-degree for each word is 26*word_len. Thus we should not be affected by any previous question, try to replace "character" one index by one index. Below is a wrong solution through such wrong thinking.

Wrong solution 1:

public class Solution {
public List<List<String>> findLadders(String start, String end, Set<String> dict) {
List<List<String>> ret = new ArrayList<List<String>> ();
if (start == null || end == null || dict == null)
throw new IllegalArgumentException("The passed in arguments is illegal");
ArrayList<String> path = new ArrayList<String> ();
path.add(start);
findPath(start, end, 0, dict, path, ret);
return ret;
} private void findPath(String cur_str, String end, int index, Set<String> dict, ArrayList<String> path, List<List<String>> ret) {
if (cur_str.equals(end)) {
ret.add(new ArrayList<String>(path));
return;
}
if (index == end.length()) {
return;
}
for (int pos = 0; pos < end.length(); pos++) {
for (int i = 0; i < 26; i++) {
char replace = (char)('a' + i);
String new_str = cur_str.substring(0, pos) + replace + cur_str.substring(pos+1, cur_str.length());
if (dict.contains(new_str)) {
path.add(new_str);
findPath(new_str, end, index+1, dict, path, ret);
path.remove(path.size()-1);
}
}
}
}
}

Solution 1:

Unlike Word Ladder problem, which only care about the shortest path's length. For this problem, we need to print out all shortest pathes, which is a subset of all pathes. If we use DFS, we need to traverse each of those path. Apparently, the search cost is quite expensive.
Usable version 1:
public class Solution {
public List<List<String>> findLadders(String start, String end, Set<String> dict) {
List<List<String>> ret = new ArrayList<List<String>> ();
if (start == null || end == null || dict == null)
throw new IllegalArgumentException("The passed in arguments is illegal");
ArrayList<String> path = new ArrayList<String> ();
HashSet<String> visited = new HashSet<String> ();
visited.add(start);
path.add(start);
findPath(start, end, dict, path, visited, ret);
return ret;
} private void findPath(String cur_str, String end, Set<String> dict, ArrayList<String> path, Set<String> visited, List<List<String>> ret) {
if (cur_str.equals(end)) {
ret.add(new ArrayList<String>(path));
return;
}
for (int pos = 0; pos < end.length(); pos++) {
for (int i = 0; i < 26; i++) {
char replace = (char)('a' + i);
String new_str = cur_str.substring(0, pos) + replace + cur_str.substring(pos+1, cur_str.length());
if (dict.contains(new_str) && !visited.contains(new_str)) {
visited.add(new_str);
path.add(new_str);
findPath(new_str, end, dict, path, visited, ret);
path.remove(path.size()-1);
visited.remove(new_str);
}
}
}
}
} The above code structure is easy, but the time complexity is too high, since we need to search all possible routines.

Improvement Analysis:

Apparently, we want to use the powerful BFS for this problem.
The advantage we can take: the shortest path must be first reached than other valid path. int min_level = 0;
while (!queue.isEmpty()) {
WordNode cur = queue.poll();
if (min_level != 0 && level > min_level)
continue;
...
if (min_level == 0)
min_level = level;
if (level == min_level && min_level != 0) {
...
}
} Challenge 1:
Since this problem ask us to print out all shortest pathes, it is far more hard than the previous question, since we could not easily tag all encountered words. However, For this problem, if we blindly tag all encounter words, we could lose answer.
-------------------------------------------------
Case: If we tag all words as visited we have encountered before enqueue.
start: hot
end: dog
dict: [hot, dot, hog, dog] Expected: [[hot, dot, dog], [hot, hog, dog]]
Output: [[hot, dot, dog]]
-------------------------------------------------
Step 1: equeue "hot" (tag "hot" as visited)
Step 2: dequeue "hot", enqueue "dot", "hog" (tag "dot" and "hog" as visited).
Step 3: dequeue "dot", enqueue "dog" (tag "dog" as visited).
step 4: dequeue "hog", try to enqueue "dog". (failed, because "dog" has already been tagged as visited). A way to fix this failure is never tage the "end" word as visisted.
if (!new_word.equals(end))
visited.add(new_word); But it's a little ugly, don't you think so? Challenge 2:
In BFS search, even we reached the target word, how could we recover the path that reach it.
This question has bothered me a lot, until I have seen the genius method: design the WordNode structure for recording previous node reference.
class WordNode {
String word;
WordNode pre;
public WordNode(String word, WordNode pre) {
this.word = word;
this.pre = pre;
}
} We use the queue to contain WordNode.
Queue<WordNode> queue = new LinkedList<WordNode> ();
Once we enqueue a word into the String, we wrap it with WordNode.
if (!visited.contains(new_word) && dict.contains(new_word)) {
queue.offer(new WordNode(new_word, cur)); Mis understanding: Since Java automatically collect the garbage, if we dequeue a WordNode, the information for WordNode is forever disappeared, how could we recover it? Actually, we still have a chain to point all WordNode to guarantee them not disappear. Note the arugaments we have passed to construct WordNode: new WordNode(new_word, cur). The "cur" is the reference for the current node. When we reach the target node we can trace this information back.
Note: In different search path, even for the same word, they are in different WordNode.
----------------------------------------------------------------------
if (level == min_level && min_level != 0) {
ArrayList<String> item = new ArrayList<String> ();
item.add(cur_word);
while (cur.pre != null) {
cur = cur.pre;
item.add(0, cur.word);
}
ret.add(item);
}
---------------------------------------------------------------------- Even we have solved the above two challenges, we still could make a lot mistakes for using this solving strategy.
Since we rely on "cur_num, next_num, level" to maintian the level information we need. And now we have return in the middle(before reach checking "cur_num == 0"). Any error is unavoidable in this routine.

Solution 2:

class WordNode {
String word;
WordNode pre;
public WordNode(String word, WordNode pre) {
this.word = word;
this.pre = pre;
}
} public class Solution {
public List<List<String>> findLadders(String start, String end, Set<String> dict) {
List<List<String>> ret = new ArrayList<List<String>> ();
if (start == null || end == null || dict == null)
throw new IllegalArgumentException("The passed in arguments is illegal");
Queue<WordNode> queue = new LinkedList<WordNode> ();
HashSet<String> visited = new HashSet<String> ();
queue.offer(new WordNode(start, null));
dict.add(end);
visited.add(start);
int cur_num = 1;
int next_num = 0;
int level = 1;
int min_level = 0;
while (!queue.isEmpty()) {
WordNode cur = queue.poll();
if (min_level != 0 && level > min_level)
continue;
String cur_word = cur.word;
cur_num--;
if (end.equals(cur_word)) {
if (min_level == 0)
min_level = level;
//the first min_level was set is the lowest level
if (level == min_level && min_level != 0) {
ArrayList<String> item = new ArrayList<String> ();
item.add(cur_word);
while (cur.pre != null) {
cur = cur.pre;
item.add(0, cur.word);
}
ret.add(item);
}
if (cur_num == 0) {
cur_num = next_num;
next_num = 0;
level++;
}
continue;
}
//don't put the "end" into visited array.
char[] char_array = cur_word.toCharArray();
for (int i = 0; i < end.length(); i++) {
char copy = char_array[i];
for (char c = 'a'; c <= 'z'; c++) {
char_array[i] = c;
String new_word = new String(char_array);
if (!visited.contains(new_word) && dict.contains(new_word)) {
queue.offer(new WordNode(new_word, cur));
next_num++;
if (!new_word.equals(end))
visited.add(new_word);
}
}
char_array[i] = copy;
}
if (cur_num == 0) {
cur_num = next_num;
next_num = 0;
level++;
}
} return ret;
}
}
Since we have already solved two important challenges in BFS.
1. how to visit the "target" word twice, thus we could record other shortest search pathes.
2. how to trace back a search path. Improvement 1:
However, the code structure we have used in "level-traverse" is still not clear enough for tackling this problem, there are too many "counts" needed to maintian properly, which makes the code hard to read and implement. A way to solve this problem is to leverge our helepr data structure "WordNode", we use it not to record the pre node of the current node, we also record the level of the current node. Since we wrap the level information with the node, the code could be quite clear and easy.
1. How to set the initial node?
queue.offer(new WordNode(null, start, 1));
The initial node is the "start", its level is 1. 2. How to specify the level for nodes at next level?
if (un_visited.contains(new_word)) {
visited.add(new_word);
queue.offer(new WordNode(cur_node, new_word, cur_node.level+1));
} 3. How to decide whether we reach a new level?
if (cur_node.level > cur_level) {
un_visited.removeAll(visited);
cur_level = cur_node.level;
} Haha...Quite smart and elegant! Don't you think so!!! Improvement 2:
Rather than avoid tagging the "end" word (which still problemetic), we can cover all shortest pathes by using two HashSets.
One hashset is called "un_visited", another hashset is called "visited". Only when we reach level 'i+1', we tag all nodes at "i" as unreachable.(remove them from un_visted hashset). Note: the visited at here means a word was visited at current level. The reason.
start: hot
end: dog
dict: [hot, dot, hog, dog] step 1: enqueue "hot", mark it as visited.
visited: ["hot"]
unvisited: ["hot", "dot", "hog", "dog"]
step 2: dequeue "hot", enqueue "dot","hog". delete "hot" from unvisited. add "hot", "dog" into visited.
visited: ["hot", "dot", "hog"]
unvisited: ["dot", "hog", "dog"]
step 3: deque "dot", enqueue "dog". "dog" into visited.
visited: ["hot", "dot", "hog", "dog"]
unvisited: ["dot", "hog", "dog"] //note: since there is still "hog" at the same level, unvisited was unchanged.<important>
step 4: deque "dot", enqueue "dog"<different WordNode>. "dog" into visited.
visited: ["hot", "dot", "hog", "dog"]
unvisited: ["dot", "hog", "dog"]
step 5: deque "dog", "dot", "hog", "dog" was removed from unvisited. <two dogs have already been enqueued at step 3 and step 4>
visited: ["hot", "dot", "hog", "dog"]
unvisited: [] So nice!!! We tag the nodes as visited level by level!!! Incase "i" level has multi nodes point to the same element at "i+1" level. Implementation:
1. prepare initial state.
Set<String> visited = new HashSet<String> ();
Set<String> un_visited = new HashSet<String> ();
int cur_level = 1;
dict.add(end);
un_visited.addAll(dict);
queue.offer(new WordNode(null, start, 1));
visited.add(start); 2. remove above(i) level visited nodes.
if (cur_node.level > cur_level) {
un_visited.removeAll(visited);
cur_level = cur_node.level;
} 3. add new words into visited array.
if (un_visited.contains(new_word)) {
visited.add(new_word);
queue.offer(new WordNode(cur_node, new_word, cur_node.level+1));
}

Solution:

class WordNode {
WordNode pre;
String word;
int level;
public WordNode(WordNode pre, String word, int level) {
this.pre = pre;
this.word = word;
this.level = level;
}
} public class Solution {
public List<List<String>> findLadders(String start, String end, Set<String> dict) {
if (start == null || end == null || dict == null)
throw new IllegalArgumentException("The passed in arguments are illegal");
List<List<String>> ret = new ArrayList<List<String>> ();
Queue<WordNode> queue = new LinkedList<WordNode> ();
Set<String> visited = new HashSet<String> ();
Set<String> un_visited = new HashSet<String> ();
int cur_level = 1;
dict.add(end);
un_visited.addAll(dict);
queue.offer(new WordNode(null, start, 1));
visited.add(start);
while (!queue.isEmpty()) {
WordNode cur_node = queue.poll();
if (cur_node.level > cur_level) {
un_visited.removeAll(visited);
cur_level = cur_node.level;
}
String cur_word = cur_node.word;
if (cur_word.equals(end)) {
ArrayList<String> item = new ArrayList<String> ();
while (cur_node != null) {
item.add(0, cur_node.word);
cur_node = cur_node.pre;
}
ret.add(item);
continue;
}
char[] char_array = cur_word.toCharArray();
for (int i = 0; i < end.length(); i++) {
char temp = char_array[i];
for (char c = 'a'; c <= 'z'; c++) {
char_array[i] = c;
String new_word = new String(char_array);
if (un_visited.contains(new_word)) {
visited.add(new_word);
queue.offer(new WordNode(cur_node, new_word, cur_node.level+1));
}
}
char_array[i] = temp;
}
}
return ret;
}
}

[LeetCode#128]Word Ladder II的更多相关文章

  1. [Leetcode Week5]Word Ladder II

    Word Ladder II 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/word-ladder-ii/description/ Descripti ...

  2. 【leetcode】Word Ladder II

      Word Ladder II Given two words (start and end), and a dictionary, find all shortest transformation ...

  3. Java for LeetCode 126 Word Ladder II 【HARD】

    Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...

  4. [LeetCode] 126. Word Ladder II 词语阶梯 II

    Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transformat ...

  5. LeetCode 126. Word Ladder II 单词接龙 II(C++/Java)

    题目: Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transfo ...

  6. [LeetCode] 126. Word Ladder II 词语阶梯之二

    Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transformat ...

  7. [Leetcode][JAVA] Word Ladder II

    Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...

  8. leetcode 126. Word Ladder II ----- java

    Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transformat ...

  9. Leetcode#126 Word Ladder II

    原题地址 既然是求最短路径,可以考虑动归或广搜.这道题对字典直接进行动归是不现实的,因为字典里的单词非常多.只能选择广搜了. 思路也非常直观,从start或end开始,不断加入所有可到达的单词,直到最 ...

随机推荐

  1. 数据库的CRUD操作

    一:数据库的CRUD操作,C是指create新增,R是指retrieve检索,U是指update更改,D是指delete删除 SQL语句分为3类: 1.DDL指数据定义语言如:create,drop, ...

  2. 深入理解Javascript变量作用域

    在学习JavaScript的变量作用域之前,我们应当明确几点: a.JavaScript的变量作用域是基于其特有的作用域链的. b.JavaScript没有块级作用域. c.函数中声明的变量在整个函数 ...

  3. PHP 时间函数集合

    计算指定日期的前几天,几个月或者几年的函数 $a = '2014/08/21';echo date( "Y-m-d", strtotime( "-6 month  &qu ...

  4. JS事件监听 JS:attachEvent和addEventListener 使用方法

    attachEvent与addEventListener区别适应的浏览器版本不同,同时在使用的过程中要注意attachEvent方法          按钮onclickaddEventListene ...

  5. [解答]对‘’未定义的引用 collect2: 错误: ld 返回 1

    写的makefile适用于32位,但是放到64位机器上make就有问题. 需要在makefile中gcc -o....的结尾加上-pthread,例如: bloomfilter.o: bloomfil ...

  6. Linux同步时间命令ntpdate

    转自:http://orgcent.com/linux-ntpdate/ 由于要同步Linux服务器的时间,为了保证时间的高度准确性,放弃date命令而转向ntpdate(同步时间命令). 方案如下: ...

  7. Java之循环输出等腰三角形

    public class aaa{ public static void main(String[] args) { int max=5; for(int i=1;i<=5;i++){//控制行 ...

  8. Java-jfree报表(学习整理)----饼状图、柱状图、折线统计图

    1.使用的报表工具: jfree报表 2.下载网址: http://www.jfree.org/ 下载之后先解压:如下图 下载后:需要的jar包!如下图: 打开:找到以下的两个jar包 再导入开发项目 ...

  9. 【原创】史上最全的Android开发环境搭建

    开始学习Android了 看着眼花缭乱的教程真心无奈...So  无耻的来了个大综合 自己充当了小白鼠.. (PS 若文章中链接失效 请留言反馈me会尽快修复) 开始的开始 java运行环境还是很必要 ...

  10. JavaScript学习总结【3】、JS对象

    在 JS 中一切皆对象,并提供了多个内置对象,比如:String.Array.Date 等,此外还支持自定义对象.对象只是一种特殊类型的数据,并拥有属性和方法,属性是与对象相关的值,方法是能够在对象上 ...