Problem:

Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from start to end, such that:

  1. Only one letter can be changed at a time
  2. Each intermediate word must exist in the dictionary

For example,

Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]

Return

  [
["hit","hot","dot","dog","cog"],
["hit","hot","lot","log","cog"]
]

Note:

  • All words have the same length.
  • All words contain only lowercase alphabetic characters.

Analysis:

As we have analyzed in the Word Ladder simple version, the out-degree for each word is 26*word_len. Thus we should not be affected by any previous question, try to replace "character" one index by one index. Below is a wrong solution through such wrong thinking.

Wrong solution 1:

public class Solution {
public List<List<String>> findLadders(String start, String end, Set<String> dict) {
List<List<String>> ret = new ArrayList<List<String>> ();
if (start == null || end == null || dict == null)
throw new IllegalArgumentException("The passed in arguments is illegal");
ArrayList<String> path = new ArrayList<String> ();
path.add(start);
findPath(start, end, 0, dict, path, ret);
return ret;
} private void findPath(String cur_str, String end, int index, Set<String> dict, ArrayList<String> path, List<List<String>> ret) {
if (cur_str.equals(end)) {
ret.add(new ArrayList<String>(path));
return;
}
if (index == end.length()) {
return;
}
for (int pos = 0; pos < end.length(); pos++) {
for (int i = 0; i < 26; i++) {
char replace = (char)('a' + i);
String new_str = cur_str.substring(0, pos) + replace + cur_str.substring(pos+1, cur_str.length());
if (dict.contains(new_str)) {
path.add(new_str);
findPath(new_str, end, index+1, dict, path, ret);
path.remove(path.size()-1);
}
}
}
}
}

Solution 1:

Unlike Word Ladder problem, which only care about the shortest path's length. For this problem, we need to print out all shortest pathes, which is a subset of all pathes. If we use DFS, we need to traverse each of those path. Apparently, the search cost is quite expensive.
Usable version 1:
public class Solution {
public List<List<String>> findLadders(String start, String end, Set<String> dict) {
List<List<String>> ret = new ArrayList<List<String>> ();
if (start == null || end == null || dict == null)
throw new IllegalArgumentException("The passed in arguments is illegal");
ArrayList<String> path = new ArrayList<String> ();
HashSet<String> visited = new HashSet<String> ();
visited.add(start);
path.add(start);
findPath(start, end, dict, path, visited, ret);
return ret;
} private void findPath(String cur_str, String end, Set<String> dict, ArrayList<String> path, Set<String> visited, List<List<String>> ret) {
if (cur_str.equals(end)) {
ret.add(new ArrayList<String>(path));
return;
}
for (int pos = 0; pos < end.length(); pos++) {
for (int i = 0; i < 26; i++) {
char replace = (char)('a' + i);
String new_str = cur_str.substring(0, pos) + replace + cur_str.substring(pos+1, cur_str.length());
if (dict.contains(new_str) && !visited.contains(new_str)) {
visited.add(new_str);
path.add(new_str);
findPath(new_str, end, dict, path, visited, ret);
path.remove(path.size()-1);
visited.remove(new_str);
}
}
}
}
} The above code structure is easy, but the time complexity is too high, since we need to search all possible routines.

Improvement Analysis:

Apparently, we want to use the powerful BFS for this problem.
The advantage we can take: the shortest path must be first reached than other valid path. int min_level = 0;
while (!queue.isEmpty()) {
WordNode cur = queue.poll();
if (min_level != 0 && level > min_level)
continue;
...
if (min_level == 0)
min_level = level;
if (level == min_level && min_level != 0) {
...
}
} Challenge 1:
Since this problem ask us to print out all shortest pathes, it is far more hard than the previous question, since we could not easily tag all encountered words. However, For this problem, if we blindly tag all encounter words, we could lose answer.
-------------------------------------------------
Case: If we tag all words as visited we have encountered before enqueue.
start: hot
end: dog
dict: [hot, dot, hog, dog] Expected: [[hot, dot, dog], [hot, hog, dog]]
Output: [[hot, dot, dog]]
-------------------------------------------------
Step 1: equeue "hot" (tag "hot" as visited)
Step 2: dequeue "hot", enqueue "dot", "hog" (tag "dot" and "hog" as visited).
Step 3: dequeue "dot", enqueue "dog" (tag "dog" as visited).
step 4: dequeue "hog", try to enqueue "dog". (failed, because "dog" has already been tagged as visited). A way to fix this failure is never tage the "end" word as visisted.
if (!new_word.equals(end))
visited.add(new_word); But it's a little ugly, don't you think so? Challenge 2:
In BFS search, even we reached the target word, how could we recover the path that reach it.
This question has bothered me a lot, until I have seen the genius method: design the WordNode structure for recording previous node reference.
class WordNode {
String word;
WordNode pre;
public WordNode(String word, WordNode pre) {
this.word = word;
this.pre = pre;
}
} We use the queue to contain WordNode.
Queue<WordNode> queue = new LinkedList<WordNode> ();
Once we enqueue a word into the String, we wrap it with WordNode.
if (!visited.contains(new_word) && dict.contains(new_word)) {
queue.offer(new WordNode(new_word, cur)); Mis understanding: Since Java automatically collect the garbage, if we dequeue a WordNode, the information for WordNode is forever disappeared, how could we recover it? Actually, we still have a chain to point all WordNode to guarantee them not disappear. Note the arugaments we have passed to construct WordNode: new WordNode(new_word, cur). The "cur" is the reference for the current node. When we reach the target node we can trace this information back.
Note: In different search path, even for the same word, they are in different WordNode.
----------------------------------------------------------------------
if (level == min_level && min_level != 0) {
ArrayList<String> item = new ArrayList<String> ();
item.add(cur_word);
while (cur.pre != null) {
cur = cur.pre;
item.add(0, cur.word);
}
ret.add(item);
}
---------------------------------------------------------------------- Even we have solved the above two challenges, we still could make a lot mistakes for using this solving strategy.
Since we rely on "cur_num, next_num, level" to maintian the level information we need. And now we have return in the middle(before reach checking "cur_num == 0"). Any error is unavoidable in this routine.

Solution 2:

class WordNode {
String word;
WordNode pre;
public WordNode(String word, WordNode pre) {
this.word = word;
this.pre = pre;
}
} public class Solution {
public List<List<String>> findLadders(String start, String end, Set<String> dict) {
List<List<String>> ret = new ArrayList<List<String>> ();
if (start == null || end == null || dict == null)
throw new IllegalArgumentException("The passed in arguments is illegal");
Queue<WordNode> queue = new LinkedList<WordNode> ();
HashSet<String> visited = new HashSet<String> ();
queue.offer(new WordNode(start, null));
dict.add(end);
visited.add(start);
int cur_num = 1;
int next_num = 0;
int level = 1;
int min_level = 0;
while (!queue.isEmpty()) {
WordNode cur = queue.poll();
if (min_level != 0 && level > min_level)
continue;
String cur_word = cur.word;
cur_num--;
if (end.equals(cur_word)) {
if (min_level == 0)
min_level = level;
//the first min_level was set is the lowest level
if (level == min_level && min_level != 0) {
ArrayList<String> item = new ArrayList<String> ();
item.add(cur_word);
while (cur.pre != null) {
cur = cur.pre;
item.add(0, cur.word);
}
ret.add(item);
}
if (cur_num == 0) {
cur_num = next_num;
next_num = 0;
level++;
}
continue;
}
//don't put the "end" into visited array.
char[] char_array = cur_word.toCharArray();
for (int i = 0; i < end.length(); i++) {
char copy = char_array[i];
for (char c = 'a'; c <= 'z'; c++) {
char_array[i] = c;
String new_word = new String(char_array);
if (!visited.contains(new_word) && dict.contains(new_word)) {
queue.offer(new WordNode(new_word, cur));
next_num++;
if (!new_word.equals(end))
visited.add(new_word);
}
}
char_array[i] = copy;
}
if (cur_num == 0) {
cur_num = next_num;
next_num = 0;
level++;
}
} return ret;
}
}
Since we have already solved two important challenges in BFS.
1. how to visit the "target" word twice, thus we could record other shortest search pathes.
2. how to trace back a search path. Improvement 1:
However, the code structure we have used in "level-traverse" is still not clear enough for tackling this problem, there are too many "counts" needed to maintian properly, which makes the code hard to read and implement. A way to solve this problem is to leverge our helepr data structure "WordNode", we use it not to record the pre node of the current node, we also record the level of the current node. Since we wrap the level information with the node, the code could be quite clear and easy.
1. How to set the initial node?
queue.offer(new WordNode(null, start, 1));
The initial node is the "start", its level is 1. 2. How to specify the level for nodes at next level?
if (un_visited.contains(new_word)) {
visited.add(new_word);
queue.offer(new WordNode(cur_node, new_word, cur_node.level+1));
} 3. How to decide whether we reach a new level?
if (cur_node.level > cur_level) {
un_visited.removeAll(visited);
cur_level = cur_node.level;
} Haha...Quite smart and elegant! Don't you think so!!! Improvement 2:
Rather than avoid tagging the "end" word (which still problemetic), we can cover all shortest pathes by using two HashSets.
One hashset is called "un_visited", another hashset is called "visited". Only when we reach level 'i+1', we tag all nodes at "i" as unreachable.(remove them from un_visted hashset). Note: the visited at here means a word was visited at current level. The reason.
start: hot
end: dog
dict: [hot, dot, hog, dog] step 1: enqueue "hot", mark it as visited.
visited: ["hot"]
unvisited: ["hot", "dot", "hog", "dog"]
step 2: dequeue "hot", enqueue "dot","hog". delete "hot" from unvisited. add "hot", "dog" into visited.
visited: ["hot", "dot", "hog"]
unvisited: ["dot", "hog", "dog"]
step 3: deque "dot", enqueue "dog". "dog" into visited.
visited: ["hot", "dot", "hog", "dog"]
unvisited: ["dot", "hog", "dog"] //note: since there is still "hog" at the same level, unvisited was unchanged.<important>
step 4: deque "dot", enqueue "dog"<different WordNode>. "dog" into visited.
visited: ["hot", "dot", "hog", "dog"]
unvisited: ["dot", "hog", "dog"]
step 5: deque "dog", "dot", "hog", "dog" was removed from unvisited. <two dogs have already been enqueued at step 3 and step 4>
visited: ["hot", "dot", "hog", "dog"]
unvisited: [] So nice!!! We tag the nodes as visited level by level!!! Incase "i" level has multi nodes point to the same element at "i+1" level. Implementation:
1. prepare initial state.
Set<String> visited = new HashSet<String> ();
Set<String> un_visited = new HashSet<String> ();
int cur_level = 1;
dict.add(end);
un_visited.addAll(dict);
queue.offer(new WordNode(null, start, 1));
visited.add(start); 2. remove above(i) level visited nodes.
if (cur_node.level > cur_level) {
un_visited.removeAll(visited);
cur_level = cur_node.level;
} 3. add new words into visited array.
if (un_visited.contains(new_word)) {
visited.add(new_word);
queue.offer(new WordNode(cur_node, new_word, cur_node.level+1));
}

Solution:

class WordNode {
WordNode pre;
String word;
int level;
public WordNode(WordNode pre, String word, int level) {
this.pre = pre;
this.word = word;
this.level = level;
}
} public class Solution {
public List<List<String>> findLadders(String start, String end, Set<String> dict) {
if (start == null || end == null || dict == null)
throw new IllegalArgumentException("The passed in arguments are illegal");
List<List<String>> ret = new ArrayList<List<String>> ();
Queue<WordNode> queue = new LinkedList<WordNode> ();
Set<String> visited = new HashSet<String> ();
Set<String> un_visited = new HashSet<String> ();
int cur_level = 1;
dict.add(end);
un_visited.addAll(dict);
queue.offer(new WordNode(null, start, 1));
visited.add(start);
while (!queue.isEmpty()) {
WordNode cur_node = queue.poll();
if (cur_node.level > cur_level) {
un_visited.removeAll(visited);
cur_level = cur_node.level;
}
String cur_word = cur_node.word;
if (cur_word.equals(end)) {
ArrayList<String> item = new ArrayList<String> ();
while (cur_node != null) {
item.add(0, cur_node.word);
cur_node = cur_node.pre;
}
ret.add(item);
continue;
}
char[] char_array = cur_word.toCharArray();
for (int i = 0; i < end.length(); i++) {
char temp = char_array[i];
for (char c = 'a'; c <= 'z'; c++) {
char_array[i] = c;
String new_word = new String(char_array);
if (un_visited.contains(new_word)) {
visited.add(new_word);
queue.offer(new WordNode(cur_node, new_word, cur_node.level+1));
}
}
char_array[i] = temp;
}
}
return ret;
}
}

[LeetCode#128]Word Ladder II的更多相关文章

  1. [Leetcode Week5]Word Ladder II

    Word Ladder II 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/problems/word-ladder-ii/description/ Descripti ...

  2. 【leetcode】Word Ladder II

      Word Ladder II Given two words (start and end), and a dictionary, find all shortest transformation ...

  3. Java for LeetCode 126 Word Ladder II 【HARD】

    Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...

  4. [LeetCode] 126. Word Ladder II 词语阶梯 II

    Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transformat ...

  5. LeetCode 126. Word Ladder II 单词接龙 II(C++/Java)

    题目: Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transfo ...

  6. [LeetCode] 126. Word Ladder II 词语阶梯之二

    Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transformat ...

  7. [Leetcode][JAVA] Word Ladder II

    Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from ...

  8. leetcode 126. Word Ladder II ----- java

    Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transformat ...

  9. Leetcode#126 Word Ladder II

    原题地址 既然是求最短路径,可以考虑动归或广搜.这道题对字典直接进行动归是不现实的,因为字典里的单词非常多.只能选择广搜了. 思路也非常直观,从start或end开始,不断加入所有可到达的单词,直到最 ...

随机推荐

  1. android检查自动升级

    好像大半年没发点啥了,也不知道自己瞎忙啥,闲下来发给最近的东东<安卓在线升级> 类已经封装好了,简单的调用就OK了.这里的数据交互,我是用.NET写的一个webservice来交互.废话也 ...

  2. MVC中HttpContext, HttpContextBase, HttpContextWrapper联系

    HttpContext // // 摘要: // 封装有关个别 HTTP 请求的所有 HTTP 特定的信息. public sealed class HttpContext : IServicePro ...

  3. MICROSOFT REPORT VIEWER 2012之无法加载相关的dll

    使用VS 2012开发报表, 如果是使用的微软的报表控件的话,默认是使用的MICROSOFT REPORT VIEWER 2012,本地开发基本上没问题,但是一发布服务器,就会发现坑了,微软挖坑从来就 ...

  4. [视频转换] C#VideoConvert视频转换帮助类 (转载)

    点击下载 VideoConvert.zip 主要功能如下 .获取文件的名字 .获取文件扩展名 .获取文件类型 .视频格式转为Flv .生成Flv视频的缩略图 .转换文件并保存在指定文件夹下 .转换文件 ...

  5. [时间操作] C#TimeHelper时间格式化帮助类 (转载)

    点击下载 TimeHelper.rar 主要功能如下 .将时间格式化成 年月日 的形式,如果时间为null,返回当前系统时间 .将时间格式化成 时分秒 的形式,如果时间为null,返回当前系统时间 . ...

  6. 重温sql语句中的join操作

    1.join语句 Sql join语句用来合并两个或多个表中的记录.ANSI标准SQL语句中有四种JOIN:INNER,OUTER,LEFTER,RIGHT,一个表或视图也可以可以和它自身做JOIN操 ...

  7. SQL几个有点偏的语句

    SQL语句是一种集合操作,就是批量操作,它的速度要比其他的语言快,所以在设计的时候很多的逻辑都会放在sql语句或者存储过程中来实现,这个是一种设计思想.但是今天我们来讨论另外一个话题.Sql页提供了丰 ...

  8. 研究WCF并发及处理能力的控制

    WCF 跟并发 性能相关的几个配置:1.系统控制的客户端网络连接并发(如果服务端也需要并发请求的话这个参数也是需要的):          <configuration>          ...

  9. Oracle: Oracle行转列、列转行的Sql语句总结

    例子原型: ' ; 运行结果如下: 一.多字段的拼接 将两个或者多个字段拼接成一个字段: ' ; 运行结果: 二.行转列 将某个字段的多行结果,拼接成一个字段,获取拼接的字符串[默认逗号隔开] ' ; ...

  10. 配置MyEclipse+Hibernate连接Sql Server 2008出错

    下文主要是讲述最近配置MyEclipse连接Sql Server 2008时遇到的一个问题,而不关注如何配置Sql Server 2008支持TCP/IP连接.Hibernate如何操作Sql Ser ...