Solution:

  比较好的图论的题。

要做这一题,首先要分析love关系和hate关系中,love关系具有传递性。更关键的一点,hate关系是不能成奇环的。

看到没有奇环很自然想到二分图的特性。

那么当前的任务是先二分染色,判断给定的边是否有冲突,并且缩点。

假设缩完点后图中只身下k个点。这k个点的hate关系满足二分图的关系。

那么计算组合数,共2^(k-1)种方法。

#include <bits/stdc++.h>

using namespace std;
const int N = ;
typedef pair<int, int> ii;
int vis[N], n, m , flag , s;
vector<ii> E[N]; void dfs (int x, int k)
{
vis[x] = k;
--s;
for (auto &i : E[x]) {
if (!~vis[i.first]) {
dfs (i.first, k ^ i.second);
} else {
if ( (vis[x]^vis[i.first]) != i.second) {
flag = ;
return ;
}
}
if (flag) return;
}
} int main()
{
memset (vis, -, sizeof vis);
ios::sync_with_stdio ( );
cin >> n >> m;
s = n;
for ( int i = , u, v, c; i <= m; ++i ) {
cin >> u >> v >> c;
E[u].push_back (make_pair (v, c ^ ) );
E[v].push_back (make_pair (u, c ^ ) );
}
for (int i = ; i <= n; ++i) {
if (!~vis[i] && !E[i].empty() ) {
++s;
dfs (i, );
}
if (flag) {
cout << << endl;
return ;
}
}
long long ans = , p = ;
--s;
while ( s > ) {
if ( s & ) ans = ans * p % ;
p = ( p * p ) % ;
s >>= ;
}
cout << ans << endl;
}

Codeforces 553C Love Triangles(图论)的更多相关文章

  1. 【codeforces 553C】Love Triangles

    [题目链接]:http://codeforces.com/problemset/problem/553/C [题意] 给你n个点,m条边; 每种边有2两种类型; 让你补充剩下的边,构造一个完全图; 使 ...

  2. Codeforces 15 E. Triangles

    http://codeforces.com/problemset/problem/15/E 题意: 从H点走下去,再走回H点,不能走重复路径,且路径不能把黑色三角形包围的方案数 中间的黑色三角形把整张 ...

  3. CodeForces - 13D :Triangles(向量法:问多少个蓝点三角形内部无红点)

    Little Petya likes to draw. He drew N red and M blue points on the plane in such a way that no three ...

  4. 【codeforces 229C】Triangles

    [题目链接]:http://codeforces.com/problemset/problem/229/C [题意] 给你一张完全图; 然后1个人从中选择m条边; 然后另外一个人从中选择剩余的n*(n ...

  5. Codeforces 553D Nudist Beach(图论,贪心)

    Solution: 假设已经选了所有的点. 如果从中删掉一个点,那么其它所有点的分值只可能减少或者不变. 如果要使若干步删除后最小的分值变大,那么删掉的点集中肯定要包含当前分值最小的点. 所以每次删掉 ...

  6. [CodeForces]CodeForces - 1025F Disjoint Triangles

    题意: 给出平面上n个点,问能在其中选出6个点,组成两个三角形,使得其互不相交 问有多少种选法 大致思路  考虑枚举一条直线,将所有得点分为左右两部分,其中有两个点在直线上, 以这两个点为顶点,分别统 ...

  7. CodeForces 52B Right Triangles 矩阵上的计数

    题目链接:点击打开链接 题意: 问有多少个与矩阵边平行的直角三角形.且三角形的3个顶点都是* 对于 L形 或者_| 形的三角形.我们仅仅须要知道在_ 上方有多少个*就可以,下底边则任取2个 所以用l[ ...

  8. Codeforces 1163E Magical Permutation [线性基,构造]

    codeforces 思路 我顺着图论的标签点进去的,却没想到-- 可以发现排列内每一个数都是集合里的数异或出来的. 考虑答案的上界是多少.如果能用小于\(2^k\)的数构造出\([0,2^k-1]\ ...

  9. Codeforces Gym 100015F Fighting for Triangles 状压DP

    Fighting for Triangles 题目连接: http://codeforces.com/gym/100015/attachments Description Andy and Ralph ...

随机推荐

  1. .NET Linq/MVC/架构

    学习参考: http://www.cnblogs.com/wangiqngpei557/p/3576685.html

  2. 神经网络原理及其c++实现

    1引言 数字识别是模式识别领域 中的一个重要分支,数字识别一般通过特征匹配及特征判别的传统方法进行处理.特征匹配通常适用于规范化的印刷体字符的识别,而 特征判别多用于手写字符识别,这些方法还处于探索阶 ...

  3. Bzoj 3173: [Tjoi2013]最长上升子序列 平衡树,Treap,二分,树的序遍历

    3173: [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1183  Solved: 610[Submit][St ...

  4. vim spf13

    效果图来一个: http://vim.spf13.com/ 这个网站里面的vim配置非常全,推荐. 下面是对这个vim快捷键总结: <Leader> 是"," 打卡一个 ...

  5. 玩玩hibernate

    这几天师兄,让我玩玩hibernate,然后通过这个玩意写爬虫(spider).这一说不打紧,嗯,一个星期没有了,全都是由于配置环境,心很塞,整个星期的空闲时间都用来做重复的工作.在学习之前,我先查找 ...

  6. 【转】谁说Vim不是IDE?(二)

    谁说Vim不是IDE?(二)   环境配置 “如果你认为Vim只是一个文本编辑器,你就输了”——来自Vim老鸟 Vim以简洁的方式提供了丰富的配置功能,主要配置体系由一个文件和文件夹组成.在一台安装了 ...

  7. myeclipse building workspace如何禁止及提高myeclipse速度

    大家一定对building workspace时那缓慢的速度给困扰到了吧~ 其实只要把project选项里的 building automatically前的勾去掉,就可以快很多了.. 另外大家一定对 ...

  8. 23讲 URL

    这是看完23讲后的小笔记,关于URL规则.伪静态. 一.URL规则 2.此处的区分大小写,也只是对第一个字母区分,并非对整个模块名. 3.模块名复杂时,且区分大小写,此时在地址栏访问时要用" ...

  9. JSP版(utf8编码)的Ueditor百度文章编辑器配置以及使用说明

    二话不说,先上图: 我配置好的效果大致是这些功能:基本的文字编辑功能.图片上传功能.附件上传功能.百度/谷歌地图搜索截图.视/音频发布功能.这个插件是现今我用过觉得最舒服的编辑器,功能齐全强大,稍微修 ...

  10. Hadoop 2.4.0新特性介绍

    在2014年4月7日,Apache公布了Hadoop 2.4.0 .相比于hadoop 2.3.0,这个版本号有了一定的改进,突出的变化能够总结为下列几点(官方文档说明): 1 支持HDFS訪问控制列 ...