Fortunately, Elasticsearch provides a very comprehensive and powerful REST API that you can use to interact with your cluster. Among the few things that can be done with the API are as follows:

  • Check your cluster, node, and index health, status, and statistics
  • Administer your cluster, node, and index data and metadata
  • Perform CRUD (Create, Read, Update, and Delete) and search operations against your indexes
  • Execute advanced search operations such as paging, sorting, filtering, scripting, aggregations, and many others

es提供了一套容易理解并且强大的rest api接口,通过该接口你可以和集群进行交互,完成各种操作:检查集群状态、管理集群、对索引做CRUD操作、查询索引;

Rest API Pattern:

<REST Verb> /<Index>/<Type>/<ID>[?pretty|v]

ps:Type相当于Category或者Partition的概念;Type未来会被废弃掉;

The pretty parameter, again, just tells Elasticsearch to return pretty-printed JSON results.

所有返回json接口都可以增加pretty参数,这样返回的json是格式化的;

Each of the commands accepts a query string parameter v to turn on verbose output.

v参数意味着详细输出;

以下通过CURL请求,关于CURL详见:https://www.cnblogs.com/barneywill/p/10279555.html

一  集群相关

1 查看健康情况

# curl http://$es_server:9200/_cat/health?v
epoch timestamp cluster status node.total node.data shards pri relo init unassign pending_tasks max_task_wait_time active_shards_percent
1547990539 21:22:19 elasticsearch green 3 3 10 5 0 0 0 0 - 100.0%

2 查看节点

# curl http://$es_server:9200/_cat/nodes?v
ip heap.percent ram.percent cpu load_1m load_5m load_15m node.role master name
server1 29 74 1 0.07 0.10 0.13 mdi * 3iLMMxu
server2 45 74 1 0.11 0.11 0.13 mdi - vz1k1MB
server3 47 75 1 0.08 0.07 0.08 mdi - vGUu-b6

3 查看master

# curl 'http://$es_server:9200/_cat/master?v'
id host ip node
3iLMMxuCTISHPJaVo6I4SA server1 server1 3iLMMxu

4 查看所有索引

# curl http://$es_server:9200/_cat/indices?v
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size
green open testdoc GFZhtn6GSMy2pPPj8UK70Q 5 1 1 0 8.9kb 4.4kb

5 查看节点状态

# curl -XGET 'http://localhost:9200/_nodes/stats?pretty'

二 索引相关

1 建立新索引

# curl -XPUT 'http://$es_server:9200/testdoc/'
{"acknowledged":true,"shards_acknowledged":true,"index":"testdoc"}

2 删除索引

# curl -XDELETE 'http://$es_server:9200/testdoc/'

3 查看shards

# curl http://localhost:9200/_cat/shards

三 文档相关

1 插入单个文档

# curl -XPUT 'http://localhost:9200/testdoc/testtype/1' -d '{"name":"test"}'
{"_index":"testdoc","_type":"testtype","_id":"1","_version":1,"result":"created","_shards":{"total":2,"successful":2,"failed":0},"_seq_no":0,"_primary_term":1}

如果报错:

{"error":"Incorrect HTTP method for uri [/testdoc/testtype] and method [PUT], allowed: [POST]","status":405}

添加header

-H 'Content-Type: application/json'

2 查询单个文档

# curl -XGET 'http://$es_server:9200/testdoc/testtype/1'
{"_index":"testdoc","_type":"testtype","_id":"1","_version":1,"found":true,"_source":{"name":"test"}}

3 修改单个文档

1)使用相同的id和不同的数据再调用一次

# curl -XPUT 'http://$es_server:9200/testdoc/testtype/1' -d '{"name":"test hello"}'
{"_index":"testdoc","_type":"testtype","_id":"1","_version":2,"result":"updated","_shards":{"total":2,"successful":2,"failed":0},"_seq_no":1,"_primary_term":2}

2)通过update

# curl -XPOST 'http://$es_server:9200/testdoc/testtype/1/_update' -d '{"doc":{"name":"test hello again"}}'
{"_index":"testdoc","_type":"testtype","_id":"1","_version":3,"result":"updated","_shards":{"total":2,"successful":2,"failed":0},"_seq_no":2,"_primary_term":2}

4 删除单个文档

# curl -XDELETE 'http://$es_server:9200/testdoc/testtype/1'

5 批量文档操作接口

同时进行两个插入一个修改一个删除

# curl -XPOST 'http://$es_server:9200/testdoc/testtype/1/_bulk' -d '
{"index":{"_id":"3"}}
{"name": "John Doe" }
{"index":{"_id":"4"}}
{"name": "Jane Doe" }
{"update":{"_id":"1"}}
{"doc": { "name": "John Doe becomes Jane Doe" } }
{"delete":{"_id":"2"}}'

6 查询所有文档

以下两种请求等价

# curl -XGET 'http://$es_server:9200/testdoc/_search?q=*'
{"took":2,"timed_out":false,"_shards":{"total":5,"successful":5,"skipped":0,"failed":0},"hits":{"total":1,"max_score":1.0,"hits":[{"_index":"testdoc","_type":"testtype","_id":"1","_score":1.0,"_source":{"name":"test hello again"}}]}}

# curl -XPOST 'http://$es_server:9200/testdoc/_search' -d '{"query":{"match_all":{}}}'

7 查询count总数

# curl http://localhost:9200/testdoc/_count

8 通过条件查询count

# curl http://localhost:9200/testdoc/_count?q=name:hello

# curl http://localhost:9200/testdoc/_count?q=name:hello%20AND%20age:10

注意url传递query时如果有多个field,需要使用AND或OR连接,同时空格替换为编码%20

9 sql查询

# curl -XPOST -H 'Content-Type: application/json' 'http://$es_server:9200/_xpack/sql?format=txt' -d '{"query":"select * from testdoc"}'
name
----------------
test hello again

四 Setting相关

1 查看一个索引的setting

# curl -XGET 'http://localhost:9200/testdoc/_settings'

2 查看所有setting

# curl -XGET 'http://localhost:9200/_all/_settings'

五 Mapping相关

Mapping(索引结构定义)类似于表结构定义,定义所有的字段、数据类型、是否存储、是否索引、analyzer等;

Mapping is the process of defining how a document, and the fields it contains, are stored and indexed. For instance, use mappings to define:

  • which string fields should be treated as full text fields.
  • which fields contain numbers, dates, or geolocations.
  • whether the values of all fields in the document should be indexed into the catch-all _all field.
  • the format of date values.
  • custom rules to control the mapping for dynamically added fields.

1 查看单个索引的mapping

# curl http://localhost:9200/testdoc/_mapping/testtype
{"testdoc":{"mappings":{"testtype":{"properties":{"name":{"type":"text","fields":{"keyword":{"type":"keyword","ignore_above":256}}}}}}}}

2 查看所有的索引的mapping

# curl http://localhost:9200/_mapping
# curl http://localhost:9200/_all/_mapping

3 在已有mapping上添加字段

# curl -XPOST -H 'Content-Type: application/json' http://localhost:9200/testdoc/_mapping/testtype -d '
{
"properties": {
"email": {
"type": "keyword"
}
}
}'

4 设置mapping

# curl -XPOST -H 'Content-Type: application/json' http://localhost:9200/testdoc -d '
{
"mappings": {
"testtype": {
"properties": {
"title": { "type": "text", "analyzer": "standard"},
"name": { "type": "text" },
"age": { "type": "integer" },
"created": {
"type": "date",
"format": "strict_date_optional_time||epoch_millis"
}
}
}
}
}'

5 更新mapping

mapping无法更新,只能使用新的mapping创建新的索引,然后重建索引来间接实现mapping更新;

Other than where documented, existing field mappings cannot be updated. Changing the mapping would mean invalidating already indexed documents. Instead, you should create a new index with the correct mappings and reindex your data into that index. If you only wish to rename a field and not change its mappings, it may make sense to introduce an alias field.

参考:https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping.html

六 Analyzer相关

Analysis is the process of converting text, like the body of any email, into tokens or terms which are added to the inverted index for searching. Analysis is performed by an analyzer which can be either a built-in analyzer or a custom analyzer defined per index.

analyzer在mapping中配置,比如

"title": { "type": "text", "analyzer": "standard"}, \

测试analyzer

# curl -XPOST -H 'Content-Type: application/json' http://localhost:9200/_analyze?pretty -d '{"tokenizer":"standard","filter":  [ "lowercase", "asciifolding" ],"text":      "Is this chandler?"}'
{
"tokens" : [
{
"token" : "is",
"start_offset" : 0,
"end_offset" : 2,
"type" : "<ALPHANUM>",
"position" : 0
},
{
"token" : "this",
"start_offset" : 3,
"end_offset" : 7,
"type" : "<ALPHANUM>",
"position" : 1
},
{
"token" : "chandler",
"start_offset" : 8,
"end_offset" : 16,
"type" : "<ALPHANUM>",
"position" : 2
}
]
}
# curl -XPOST -H 'Content-Type: application/json' http://localhost:9200/_analyze?pretty -d '{"tokenizer":"standard","text":"联想是全球最大的笔记本厂商"}'
{
"tokens" : [
{
"token" : "联",
"start_offset" : 0,
"end_offset" : 1,
"type" : "<IDEOGRAPHIC>",
"position" : 0
},
{
"token" : "想",
"start_offset" : 1,
"end_offset" : 2,
"type" : "<IDEOGRAPHIC>",
"position" : 1
},
{
"token" : "是",
"start_offset" : 2,
"end_offset" : 3,
"type" : "<IDEOGRAPHIC>",
"position" : 2
},
{
"token" : "全",
"start_offset" : 3,
"end_offset" : 4,
"type" : "<IDEOGRAPHIC>",
"position" : 3
},
{
"token" : "球",
"start_offset" : 4,
"end_offset" : 5,
"type" : "<IDEOGRAPHIC>",
"position" : 4
},
{
"token" : "最",
"start_offset" : 5,
"end_offset" : 6,
"type" : "<IDEOGRAPHIC>",
"position" : 5
},
{
"token" : "大",
"start_offset" : 6,
"end_offset" : 7,
"type" : "<IDEOGRAPHIC>",
"position" : 6
},
{
"token" : "的",
"start_offset" : 7,
"end_offset" : 8,
"type" : "<IDEOGRAPHIC>",
"position" : 7
},
{
"token" : "笔",
"start_offset" : 8,
"end_offset" : 9,
"type" : "<IDEOGRAPHIC>",
"position" : 8
},
{
"token" : "记",
"start_offset" : 9,
"end_offset" : 10,
"type" : "<IDEOGRAPHIC>",
"position" : 9
},
{
"token" : "本",
"start_offset" : 10,
"end_offset" : 11,
"type" : "<IDEOGRAPHIC>",
"position" : 10
},
{
"token" : "厂",
"start_offset" : 11,
"end_offset" : 12,
"type" : "<IDEOGRAPHIC>",
"position" : 11
},
{
"token" : "商",
"start_offset" : 12,
"end_offset" : 13,
"type" : "<IDEOGRAPHIC>",
"position" : 12
}
]
}

中文分词smarkcn

$ bin/elasticsearch-plugin install analysis-smartcn

This plugin can be downloaded for offline install from https://artifacts.elastic.co/downloads/elasticsearch-plugins/analysis-smartcn/analysis-smartcn-6.6.2.zip.

The plugin provides the smartcn analyzer and smartcn_tokenizer tokenizer, which are not configurable.

分词效果:

# curl -XPOST -H 'Content-Type: application/json' http://localhost:9200/_analyze?pretty -d '{"tokenizer":"smartcn_tokenizer","text":"联想是全球最大的笔记本厂商"}'
{
"tokens" : [
{
"token" : "联想",
"start_offset" : 0,
"end_offset" : 2,
"type" : "word",
"position" : 0
},
{
"token" : "是",
"start_offset" : 2,
"end_offset" : 3,
"type" : "word",
"position" : 1
},
{
"token" : "全球",
"start_offset" : 3,
"end_offset" : 5,
"type" : "word",
"position" : 2
},
{
"token" : "最",
"start_offset" : 5,
"end_offset" : 6,
"type" : "word",
"position" : 3
},
{
"token" : "大",
"start_offset" : 6,
"end_offset" : 7,
"type" : "word",
"position" : 4
},
{
"token" : "的",
"start_offset" : 7,
"end_offset" : 8,
"type" : "word",
"position" : 5
},
{
"token" : "笔记本",
"start_offset" : 8,
"end_offset" : 11,
"type" : "word",
"position" : 6
},
{
"token" : "厂商",
"start_offset" : 11,
"end_offset" : 13,
"type" : "word",
"position" : 7
}
]
}

参考:https://www.elastic.co/guide/en/elasticsearch/plugins/current/analysis-smartcn.html

中文分词ik

$ bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v6.6.2/elasticsearch-analysis-ik-6.6.2.zip

The IK Analysis plugin integrates Lucene IK analyzer (http://code.google.com/p/ik-analyzer/) into elasticsearch, support customized dictionary.
Analyzer: ik_smart , ik_max_word , Tokenizer: ik_smart , ik_max_word

分词效果:

ik_smark

# curl -XPOST -H 'Content-Type: application/json' http://localhost:9200/_analyze?pretty -d '{"tokenizer":"ik_smart","text":"联想是全球最大的笔记本厂商"}'
{
"tokens" : [
{
"token" : "联想",
"start_offset" : 0,
"end_offset" : 2,
"type" : "CN_WORD",
"position" : 0
},
{
"token" : "是",
"start_offset" : 2,
"end_offset" : 3,
"type" : "CN_CHAR",
"position" : 1
},
{
"token" : "全球",
"start_offset" : 3,
"end_offset" : 5,
"type" : "CN_WORD",
"position" : 2
},
{
"token" : "最大",
"start_offset" : 5,
"end_offset" : 7,
"type" : "CN_WORD",
"position" : 3
},
{
"token" : "的",
"start_offset" : 7,
"end_offset" : 8,
"type" : "CN_CHAR",
"position" : 4
},
{
"token" : "笔记本",
"start_offset" : 8,
"end_offset" : 11,
"type" : "CN_WORD",
"position" : 5
},
{
"token" : "厂商",
"start_offset" : 11,
"end_offset" : 13,
"type" : "CN_WORD",
"position" : 6
}
]
}

ik_max_word

# curl -XPOST -H 'Content-Type: application/json' http://localhost:9200/_analyze?pretty -d '{"tokenizer":"ik_max_word","text":"联想是全球最大的笔记本厂商"}'
{
"tokens" : [
{
"token" : "联想",
"start_offset" : 0,
"end_offset" : 2,
"type" : "CN_WORD",
"position" : 0
},
{
"token" : "是",
"start_offset" : 2,
"end_offset" : 3,
"type" : "CN_CHAR",
"position" : 1
},
{
"token" : "全球",
"start_offset" : 3,
"end_offset" : 5,
"type" : "CN_WORD",
"position" : 2
},
{
"token" : "最大",
"start_offset" : 5,
"end_offset" : 7,
"type" : "CN_WORD",
"position" : 3
},
{
"token" : "的",
"start_offset" : 7,
"end_offset" : 8,
"type" : "CN_CHAR",
"position" : 4
},
{
"token" : "笔记本",
"start_offset" : 8,
"end_offset" : 11,
"type" : "CN_WORD",
"position" : 5
},
{
"token" : "笔记",
"start_offset" : 8,
"end_offset" : 10,
"type" : "CN_WORD",
"position" : 6
},
{
"token" : "本厂",
"start_offset" : 10,
"end_offset" : 12,
"type" : "CN_WORD",
"position" : 7
},
{
"token" : "厂商",
"start_offset" : 11,
"end_offset" : 13,
"type" : "CN_WORD",
"position" : 8
}
]
}

参考:https://github.com/medcl/elasticsearch-analysis-ik

七 复杂查询

1 查询接口主要参数

q
The query string.

stored_fields
The selective stored fields of the document to return for each hit, comma delimited. Not specifying any value will cause no fields to return.

sort
Sorting to perform. Can either be in the form of fieldName, or fieldName:asc/fieldName:desc. The fieldName can either be an actual field within the document, or the special _score name to indicate sorting based on scores. There can be several sort parameters (order is important).

from
The starting from index of the hits to return. Defaults to 0.

size
The number of hits to return. Defaults to 10.

timeout
A search timeout, bounding the search request to be executed within the specified time value and bail with the hits accumulated up to that point when expired. Defaults to no timeout.

default_operator
The default operator to be used, can be AND or OR. Defaults to OR.

其中sort有很多种实现,比如 _geo_distance 可以用来实现地理位置远近排序,另外还可以通过filter来实现地理位置圈定,详见:https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-geo-distance-query.html

【原创】大数据基础之ElasticSearch(2)常用API整理的更多相关文章

  1. 大数据(5) - HDFS中的常用API操作

    一.安装java 二.IntelliJ IDEA(2018)安装和破解与初期配置 参考链接 1.进入官网下载IntelliJ IDEA https://www.jetbrains.com/idea/d ...

  2. 【原创】大数据基础之ElasticSearch(4)es数据导入过程

    1 准备analyzer 内置analyzer 参考:https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis- ...

  3. 【原创】大数据基础之ElasticSearch(1)简介、安装、使用

    ElasticSearch 6.6.0 官方:https://www.elastic.co/ 一 简介 ElasticSearch简单来说是对lucene的分布式封装,增加了shard(每个shard ...

  4. 【原创】大数据基础之ElasticSearch(3)升级

    elasticsearch版本升级方案 常用的滚动升级过程(Rolling Upgrade)如下: $ curl -XPUT '$es_server:9200/_cluster/settings?pr ...

  5. 【原创】大数据基础之ElasticSearch(5)重要配置及调优

    Index Settings 重要索引配置 Index level settings can be set per-index. Settings may be: 1 static 静态索引配置 Th ...

  6. 【原创】大数据基础之Zookeeper(2)源代码解析

    核心枚举 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } zookeeper服务器状态:刚启动LOOKING,f ...

  7. 大数据基础知识问答----spark篇,大数据生态圈

    Spark相关知识点 1.Spark基础知识 1.Spark是什么? UCBerkeley AMPlab所开源的类HadoopMapReduce的通用的并行计算框架 dfsSpark基于mapredu ...

  8. 大数据除了Hadoop还有哪些常用的工具?

    大数据除了Hadoop还有哪些常用的工具? 1.Hadoop大数据生态平台Hadoop 是一个能够对大量数据进行分布式处理的软件框架.但是 Hadoop 是以一种可靠.高效.可伸缩的方式进行处理的.H ...

  9. 大数据篇:ElasticSearch

    ElasticSearch ElasticSearch是什么 ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口. ...

随机推荐

  1. H5网页后在返回到微信公众平台自定义菜单

    <p class="success">订阅成功!</p> <div class="btn" @click="finish ...

  2. JAVA关键字及作用

    ---恢复内容开始--- Java关键字及其作用 一. 总览: 访问控制 private protected public 类,方法和变量修饰符 abstract class extends fina ...

  3. docker(三) 镜像和容器常用命令

    一.镜像操作 1.搜索镜像 可以直接在Docker Hub 直接搜索镜像,当然也可以使用命令来搜索. docker search 名称 docker search tomcat 2.拉取镜像 dock ...

  4. 跨域下使用获取iframe的父页面URL

    通常情况下,我们获取iframe父页面的url很简单:parent.location或top.location即可,但前提是它们遵循同源策略. 当iframe与父页面不属于同一个域名时,像上面的获取会 ...

  5. C# Note35: 异步操作

    .NET Framework 为异步操作提供了两种设计模式:使用 IAsyncResult 对象的异步操作与使用事件的异步操作. IAsyncResult 异步设计模式 通过名为 BeginOpera ...

  6. 使用 Python 爬取网页数据

    1. 使用 urllib.request 获取网页 urllib 是 Python 內建的 HTTP 库, 使用 urllib 可以只需要很简单的步骤就能高效采集数据; 配合 Beautiful 等 ...

  7. vim编辑器的命令总结

    1. 设置显示行数 :set nu 2. 复制第100至第103行的代码

  8. 进程间通信(队列、管道)、消费者模型和进程池(apply,apply_async,map)

    一.队列(先进先出) 进程间通信:IPC(Inter-Process Communication) 队列是使用管道和锁定实现,所以Queue是多进程安全的队列,使用Queue可以实现多进程之间的数据传 ...

  9. sql 找出不包含字母、不包含汉字的数据

    --1.不包含字母 SELECT * FROM t WHERE str NOT LIKE '%[a-zA-Z]%' SELECT * FROM t --2.不包含汉字 SELECT * FROM t ...

  10. JS自定义表单提交处理方案

    JS自定义数据提交处理方案 问题 在Ajax技术流行的今天,我遇到了一个很头疼的问题,我需要维护一个前人开发的问题单模块功能,并且不停的迭代开发,而这个问题就是问题单字段特别多,而且除了更新问题单外, ...