因为MNIST数据是28*28的黑底白字图像,而且输入时要将其拉直,也就是可以看成1*784的二维张量(张量的值在0~1之间),所以我们要对图片进行预处理操作,是图片能被网络识别。

以下是代码部分

import tensorflow as tf
import numpy as np
from PIL import Image
import backward as bw
import forward as fw def restore(testPicArr):
with tf.Graph().as_default() as g:
x = tf.placeholder(tf.float32, [None, fw.INPUT_NODES])
y_ = tf.placeholder(tf.float32, [None, fw.OUTPUT_NODES])
y = fw.get_y(x, None)
preValue = tf.arg_max(y, 1) ema = tf.train.ExponentialMovingAverage(bw.MOVING_ARVERAGE_DECAY)
ema_restore = ema.variables_to_restore()
saver = tf.train.Saver(ema_restore) with tf.Session() as sess:
tf.logging.set_verbosity(tf.logging.WARN)#降低警告等级
ckpt = tf.train.get_checkpoint_state("./model/")
if ckpt and ckpt.model_checkpoint_path:
saver.restore(sess, ckpt.model_checkpoint_path) preValue = sess.run(preValue, feed_dict = {x: testPicArr})
return preValue
else:
print("NO!!!")
return -1 def pre_pic(picName):
img = Image.open(picName)
reIm = img.resize((28, 28), Image.ANTIALIAS)
im_arr = np.array(reIm.convert('L'))#变为灰度图
threshold = 50#阈值,将图片二值化操作
for i in range(28):
for j in range(28):
im_arr[i][j] = 255 - im_arr[i][j]#进行反色处理
if(im_arr[i][j] < threshold):
im_arr[i][j] = 0
else: im_arr[i][j] = 255 nm_arr = im_arr.reshape([1,784])
nm_arr = nm_arr.astype(np.float32)#类型转换
img_ready = np.multiply(nm_arr, 1.0/255.0)#把值变为0~1之间的数值 return img_ready def app():
testNum = input("Input the number of test pictutre:")
for i in range(int(testNum)):
testPic = input("the path of test picture:")
testPicArr = pre_pic(testPic)
preValue = restore(testPicArr)
print("The prediction number is :" , preValue) def main():
app() if __name__ == '__main__':
main()

[MNIST数据集]输入图像的预处理的更多相关文章

  1. SGD与Adam识别MNIST数据集

    几种常见的优化函数比较:https://blog.csdn.net/w113691/article/details/82631097 ''' 基于Adam识别MNIST数据集 ''' import t ...

  2. 一个简单的TensorFlow可视化MNIST数据集识别程序

    下面是TensorFlow可视化MNIST数据集识别程序,可视化内容是,TensorFlow计算图,表(loss, 直方图, 标准差(stddev)) # -*- coding: utf-8 -*- ...

  3. 基于MNIST数据集使用TensorFlow训练一个没有隐含层的浅层神经网络

    基础 在参考①中我们详细介绍了没有隐含层的神经网络结构,该神经网络只有输入层和输出层,并且输入层和输出层是通过全连接方式进行连接的.具体结构如下: 我们用此网络结构基于MNIST数据集(参考②)进行训 ...

  4. MNIST数据集入门

    简单的训练MNIST数据集 (0-9的数字图片) 详细地址(包括下载地址):http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html # ...

  5. keras实现mnist数据集手写数字识别

    一. Tensorflow环境的安装 这里我们只讲CPU版本,使用 Anaconda 进行安装 a.首先我们要安装 Anaconda 链接:https://pan.baidu.com/s/1AxdGi ...

  6. 【TensorFlow/简单网络】MNIST数据集-softmax、全连接神经网络,卷积神经网络模型

    初学tensorflow,参考了以下几篇博客: soft模型 tensorflow构建全连接神经网络 tensorflow构建卷积神经网络 tensorflow构建卷积神经网络 tensorflow构 ...

  7. Theano mnist数据集格式

    首先链接一篇大牛的Theano文档翻译:http://www.cnblogs.com/xueliangliu/archive/2013/04/03/2997437.html 里面有mnist.pkl. ...

  8. 【转载】用Scikit-Learn构建K-近邻算法,分类MNIST数据集

    原帖地址:https://www.jiqizhixin.com/articles/2018-04-03-5 K 近邻算法,简称 K-NN.在如今深度学习盛行的时代,这个经典的机器学习算法经常被轻视.本 ...

  9. 卷积神经网络CNN识别MNIST数据集

    这次我们将建立一个卷积神经网络,它可以把MNIST手写字符的识别准确率提升到99%,读者可能需要一些卷积神经网络的基础知识才能更好的理解本节的内容. 程序的开头是导入TensorFlow: impor ...

随机推荐

  1. 为什么要写 tf.Graph().as_default()

    首先,去tensorflow官网API上查询 tf.Graph() 会看到如下图所示的内容: 总体含义是说: tf.Graph() 表示实例化了一个类,一个用于 tensorflow 计算和表示用的数 ...

  2. BZOJ3932 主席树

    https://www.lydsy.com/JudgeOnline/problem.php?id=3932 题意:给出一些带有等级的线段,求一点上前K小个等级线段的等级之和 询问是对于每一个点询问前K ...

  3. hive笔记

    cast cast(number as string),  可以将整数转成字符串 lpad  rpad lpad(target, 10, '0')   表示在target字符串前面补0,构成一个长度为 ...

  4. 中间件方法必须返回Response对象实例(tp5.1+小程序结合时候出的问题)

    前言:在最近开发小程序通过中间件检查是否携带token时候报的一个错误 解决方法: 根据手册中需要return出去才可以不报错

  5. vim与程序员

    所有的 Unix Like 系统都会内建 vi 文书编辑器,其他的文书编辑器则不一定会存在. 但是目前我们使用比较多的是 vim 编辑器. vim 具有程序编辑的能力,可以主动的以字体颜色辨别语法的正 ...

  6. Python面向对象进阶和socket网络编程-day08

    写在前面 上课第八天,打卡: 为什么坚持?想一想当初: 一.面向对象进阶 - 1.反射补充 - 通过字符串去操作一个对象的属性,称之为反射: - 示例1: class Chinese: def __i ...

  7. oracle数据库驱动(ojdbc)

    第1部分 Q:为什么oralce的jdbc驱动,在maven上搜索到把pom配置复制到pom.xml里进行引用的时候会报错? ANS:虽然能在maven仓库里搜索到,但貌似不能用,原因是oracle是 ...

  8. python,可变对象,不可变对象,深拷贝,浅拷贝。

    学习整理,若有问题,欢迎指正. python 可变对象,不可变对象 可变对象 该对象所指定的内存地址上面的值可以被改变,变量被改变后,其所指向的内存地址上面的值,直接被改变,没有发生复制行为,也没有发 ...

  9. 2.13 break和continue

    break和continue 1. break <1> for循环 普通的循环示例如下: name = 'itheima' for x in name: print('----') pri ...

  10. AWT 新建窗口

    新建一个窗口 包 import java.awt.*; 定义 Frame frm_Draw = new Frame("Text"); 初始化代码 public void Frame ...