BZOJ 4455
树的点到图的点是双射
枚举哪些点可以映射到
然后dp容斥
复杂度 $2^n*n^3$
#include<bits/stdc++.h>
using namespace std;
#define rep(i,a,b) for(int i=(a),i##_end=(b);i<=i##_end;++i)
#define For(i,a,b) for(int i=(a),i##_end=(b);i<i##_end;++i)
#define per(i,a,b) for(int i=(b),i##_st=(a);i>=i##_st;--i)
#define fi first
#define se second
#define pb push_back
#define mp make_pair
#define dbg(x) cerr<<#x" = "<<x<<endl
#define debug(...) fprintf(stderr, __VA_ARGS__)
#define Es(x,i) for(Edge *i=G[x];i;i=i->nxt)
typedef long long ll;
typedef pair<int,int> pii;
const int inf=~0u>>1,mod=1e9+7;
inline int rd() {
int x,c,f=1;while(!isdigit(c=getchar()))f=c!='-';x=c-'0';
while(isdigit(c=getchar()))x=x*10+c-'0';return f?x:-x;
}
const int N=18;
struct Edge{int v;Edge*nxt;}pl[N*N],*cur=pl,*G[N];
inline void ins(int u,int v){*cur=(Edge){v,G[u]},G[u]=cur++;}
char g[N][N];
int n,m,a[N],tot;
ll f[N][N];
inline void Dp(int x,int fa=-1){
Es(x,i)if(i->v!=fa){
Dp(i->v,x);
}
For(i,0,tot){
f[x][i]=1;
Es(x,p)if(p->v!=fa){
ll t=0;
For(j,0,tot)if(g[a[i]][a[j]]){
t+=f[p->v][j];
}
f[x][i]*=t;
}
}
}
int main(){
#ifdef flukehn
freopen("ex_star2.in","r",stdin);
#endif
n=rd(),m=rd();
rep(i,1,m){
int u=rd()-1,v=rd()-1;
g[u][v]=g[v][u]=1;
}
ll ans=0;
For(i,1,n){
int u=rd()-1,v=rd()-1;
ins(u,v),ins(v,u);
}
For(i,1,1<<n){
tot=0;
For(j,0,n)if(i>>j&1)a[tot++]=j;
Dp(0);
ll p=0;
For(j,0,tot)p+=f[0][j];
ans+=((tot&1)?-1:1)*p;
}
if(ans<0)ans=-ans;
cout<<ans<<endl;
}
BZOJ 4455的更多相关文章
- [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...
- 【BZOJ 4455】【UOJ #185】【ZJOI 2016】小星星
http://www.lydsy.com/JudgeOnline/problem.php?id=4455 http://uoj.ac/problem/185 有一个$O(n^n)$的暴力,放宽限制可以 ...
- BZOJ 4455: [Zjoi2016]小星星
Sol 容斥原理+树形DP. 这道题用的容斥思想非常妙啊!主要的思路就是让所有点与S集合中的点对应,可以重复对应,并且可以不用对应完全(意思是是S的子集也可以).这样他有未对应完全的,那就减去,从全都 ...
- BZOJ 4455: [Zjoi2016]小星星 [容斥原理 树形DP]
4455: [Zjoi2016]小星星 题意:一个图删掉一些边形成一棵树,告诉你图和树的样子,求让图上的点和树上的点对应起来有多少方案 看了很多题解又想了一段时间,感觉题解都没有很深入,现在大致有了自 ...
- 【BZOJ 4455】 4455: [Zjoi2016]小星星 (容斥原理+树形DP)
4455: [Zjoi2016]小星星 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 426 Solved: 255 Description 小Y是 ...
- bzoj 4455 [Zjoi2016]小星星 树形dp&容斥
4455: [Zjoi2016]小星星 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 643 Solved: 391[Submit][Status] ...
- BZOJ 4455: [Zjoi2016]小星星(容斥+树形dp)
传送门 解题思路 首先题目中有两个限制,第一个是两个集合直接必须一一映射,第二个是重新标号后,\(B\)中两点有边\(A\)中也必须有.发现限制\(2\)比较容易满足,考虑化简限制\(1\).令\(f ...
- 【BZOJ 4455】 [Zjoi2016]小星星 容斥计数
dalao教导我们,看到计数想容斥……卡常策略:枚举顺序.除去无效状态.(树结构) #include <cstdio> #include <cstring> #include ...
- 【bzoj 4455】小星星(树型DP+容斥原理+dfs建树和计算的2种方式)
题意:给一个n个点的图和一个n个点的树,求图和树上的点一一对应的方案数.(N<=17) 解法:1.在树的结构上进行tree DP,f[i][j]表示树上点 i 对应图上点 j 时,这个点所在子树 ...
随机推荐
- Groovy闭包详解
Groovy闭包是一种可执行代码块的方法,闭包也是对象,可以向方法一样传递参数,因为闭包也是对象,因此可以在需要的时候执行,像方法一样闭包可以传递一个或多个参数.闭包最常见的用途就是处理集合,可以遍历 ...
- Java SE API —— 【Math 】之【BigInteger】类
目录 概述 构造方法 BigInteger(byte[] val) 概述 不可变的任意精度的整数.提供了模算术.GCD 计算.质数测试.素数生成.位操作以及一些其他操作. 算术运算的语义完全模仿 Ja ...
- sqlyog试用期到期--win10
1.win+R打开搜索框,输入regedit,打开windows注册表 2.删除HKEY_CURRENT_USER 下 software 的前几个随机编码.
- recurrent model for visual attention
paper url: https://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf year: 2014 abs ...
- HDU 3966 树链剖分后线段树维护
题意: 一棵树, 操作1.$path(a,b)$之间的点权$+k$ 操作2.单点查询 题解: 树链剖分即可,注意代码细节,双向映射 主要是记录一下板子 #include <string.h> ...
- [SDOI2009]HH的项链-树状数组/线段树
树状数组: #include<bits/stdc++.h> using namespace std; ; int id[maxn],tree[maxn],vis[maxn],num[max ...
- 二十三种设计模式之原型模式的C#实现
原型模式就是通过拷贝快速创建一个新的对象 本例UML如图 ColorBase [Serializable] public abstract class ColorBase { public int R ...
- 从头开始学JAVA[Day01]
1.Java程序的执行过程必须经过先编译,后解释两个步骤 Jvm的统一标准,具体定义了JVM的如下细节: --指令集 --寄存器 --类文件格式 --栈 --垃圾回收堆 --存储区 2.编译Java程 ...
- C#获取用户登录IP地址
public static string GetUserIp() { string ip; string[] temp; bool isErr = false ...
- shiro 错误登陆次数限制
第一步:在spring-shiro.xml 中配置缓存管理器和认证匹配器 <!-- 缓存管理器 使用Ehcache实现 --><bean id="cacheManager& ...