#include<cstdio>
#include<cstring>
#define INF 0x7fffffff
using namespace std;
const int N=2e5+;
inline int min(int a,int b){
return (a<b?a:b);
}
int first[N],next[N*],to[N*],c[N*],n;
int edge_count=;
inline void add(int x,int y,int w){
edge_count++; to[edge_count]=y;
c[edge_count]=w; next[edge_count]=first[x];
first[x]=edge_count;
}
int f[N][];
long long ans=;
//f[i][1]->以i结点为根的子树 向下流动 的最大流量
//f[i][2]->以i节点为根的子树 向上流动 的最大流量
void search(int root,int fa){ if(to[ first[root] ]==fa){
//错因分析:本想判断root结点是否为叶节点,但是存在那样一个结点NODE s.t. first【root】->father
//so, it should be 【 if(to[ first[root] ]==fa && !next[ first[root] ]) 】
f[root][]=INF;
return;
}
for(int i=first[root];i;i=next[i]){
if(to[i]==fa)continue;
search(to[i],root);
f[root][]+=min(f[ to[i] ][],c[i]);
//printf("root:%d",root);printf(" %d\n",f[root][0]);
}
}
void dfs(int root,int fa){ for(int i=first[root];i;i=next[i]){
if(to[i]==fa){
f[root][]=min(c[i],f[fa][]+f[fa][]-min(c[i],f[root][]));
}
}
for(int i=first[root];i;i=next[i]){
if(to[i]==fa)continue;
dfs(to[i],root);
}
long long t=0ll;
if(f[root][]!=(INF>>) )t+=f[root][];
if(f[root][]!=INF)t+=f[root][];
if(ans<t)ans=t;
}
int aa;
int main()
{
//freopen("degree.in","r",stdin);
//freopen("degree.out","w",stdout);
scanf("%d",&aa);
for(int k=;k<=aa;k++){
memset(first,,sizeof(first));
memset(next,,sizeof(next));
memset(to,,sizeof(to));
memset(c,,sizeof(c));
memset(f,,sizeof(f));
ans=0ll;
edge_count=; scanf("%d",&n);
for(int i=,a,b,w;i<n;++i){
scanf("%d%d%d",&a,&b,&w);
add(a,b,w);
add(b,a,w);
}
search(,);
if(!next[ first[] ])f[][]=INF>>;
dfs(,);
printf("%lld\n",ans);
}
return ;
}

Accumulation Degree的更多相关文章

  1. poj3585 Accumulation Degree【树形DP】【最大流】

    Accumulation Degree Time Limit: 5000MS   Memory Limit: 65536K Total Submissions:3151   Accepted: 783 ...

  2. POJ3585:Accumulation Degree(换根树形dp)

    Accumulation Degree Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3425   Accepted: 85 ...

  3. poj 3585 Accumulation Degree(二次扫描和换根法)

    Accumulation Degree 大致题意:有一棵流量树,它的每一条边都有一个正流量,树上所有度数为一的节点都是出口,相应的树上每一个节点都有一个权值,它表示从这个节点向其他出口可以输送的最大总 ...

  4. poj3585 Accumulation Degree[树形DP换根]

    思路其实非常简单,借用一下最大流求法即可...默认以1为根时,$f[x]$表示以$x$为根的子树最大流.转移的话分两种情况,一种由叶子转移,一种由正常孩子转移,判断一下即可.换根的时候由頂向下递推转移 ...

  5. POJ 3585 Accumulation Degree

    二次扫描与换根法 用于解决无根树,对于每一个节点作为根时都要统计 做法: 1.先以任意一个节点为根,做树形DP,保存每个节点的DP值 2.然后自上而下dfs,对于每个节点考虑以他为根的最大值 #inc ...

  6. 【POJ3585】Accumulation Degree 二次扫描与换根法

    简单来说,这是一道树形结构上的最大流问题. 朴素的解法是可以以每个节点为源点,单独进行一次dp,时间复杂度是\(O(n^2)\) 但是在朴素求解的过程中,相当于每次都求解了一次整棵树的信息,会做了不少 ...

  7. POJ3585 Accumulation Degree(二次扫描与换根法)

    题目:http://poj.org/problem?id=3585 很容易想出暴力.那么就先扫一遍. 然后得到了指定一个根后每个点的子树值. 怎么转化利用一下呢?要是能找出当前点的父亲的 “ 不含当前 ...

  8. [POJ3585]Accumulation Degree

    题面 \(\text{Solution:}\) 有些题目不仅让我们做树型 \(\text{dp}\) ,而且还让我们换每个根分别做一次, 然后这样就愉快的 \(\text{TLE}\) 了,所以我们要 ...

  9. POJ3585 Accumulation Degree 【树形dp】

    题目链接 POJ3585 题解 -二次扫描与换根法- 对于这样一个无根树的树形dp 我们先任选一根进行一次树形dp 然后再扫一遍通过计算得出每个点为根时的答案 #include<iostream ...

随机推荐

  1. idea打开项目,没有项目文件,文件报红

    删除项目文件夹中的.idea文件,重启idea,再执行如下操作.

  2. Linux 学习 (五) 压缩与解压缩命令

    Linux达人养成计划 I 学习笔记 常用压缩格式:.zip | .gz | .bz2 | .tar.gz | .tar.bz2 .zip zip 压缩文件名 源文件:压缩文件 zip -r 压缩文件 ...

  3. Ninja编译过程分析

    在Android N的系统上,初次使用了Ninja的编译系统.对于Ninja,最初的印象是用在了Chromium open source code的编译中,在chromium的编译环境中,使用ninj ...

  4. Hdoj 1847.Good Luck in CET-4 Everybody! 题解

    Problem Description 大学英语四级考试就要来临了,你是不是在紧张的复习?也许紧张得连短学期的ACM都没工夫练习了,反正我知道的Kiki和Cici都是如此.当然,作为在考场浸润了十几载 ...

  5. go Test的实现 以及 压力测试

    引用 import "testing" 一些原则 文件名必须是 *_test.go* 结尾的,这样在执行 go test 的时候才会执行到相应的代码 必须 import testi ...

  6. linux串口编程设置(转载)

    (转载)在嵌入式Linux中,串口是一个字设备,访问具体的串行端口的编程与读/写文件 的操作类似,只需打开相应的设备文件即可操作.串口编程特殊在于串 口通信时相关参数与属性的设置.嵌入式Linux的串 ...

  7. LFYZ-OJ ID: 1008 求A/B高精度值

    思路 小数点前的部分可以通过m/n直接计算得出 小数点后的20位可通过循环进行快速计算,计算方法如下: m%=n m*=10 小数点后第i位为m/n,回到第1步 第3步后,如果m%n为0,说明已经除净 ...

  8. Node.js实战项目学习系列(1) 初识Node.js

    前言 一直想好好学习node.js都是半途而废的状态,这次沉下心来,想好好的学习下node.js.打算写一个系列的文章大概10几篇文章,会一直以实际案例作为贯穿的学习. 什么是node Node.js ...

  9. Tuxedo 汇总

    ===================================C/S / Tuxedo 架构/ B/S 架构演进===================================Tuxed ...

  10. [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程

    试证明: 利用连续性方程及动量方程, 能量守恒方程 (2. 15) 可化为 (2. 21) 的形式. 证明: 注意到 $$\beex \bea &\quad\cfrac{\p}{\p t}\s ...