#include<cstdio>
#include<cstring>
#define INF 0x7fffffff
using namespace std;
const int N=2e5+;
inline int min(int a,int b){
return (a<b?a:b);
}
int first[N],next[N*],to[N*],c[N*],n;
int edge_count=;
inline void add(int x,int y,int w){
edge_count++; to[edge_count]=y;
c[edge_count]=w; next[edge_count]=first[x];
first[x]=edge_count;
}
int f[N][];
long long ans=;
//f[i][1]->以i结点为根的子树 向下流动 的最大流量
//f[i][2]->以i节点为根的子树 向上流动 的最大流量
void search(int root,int fa){ if(to[ first[root] ]==fa){
//错因分析:本想判断root结点是否为叶节点,但是存在那样一个结点NODE s.t. first【root】->father
//so, it should be 【 if(to[ first[root] ]==fa && !next[ first[root] ]) 】
f[root][]=INF;
return;
}
for(int i=first[root];i;i=next[i]){
if(to[i]==fa)continue;
search(to[i],root);
f[root][]+=min(f[ to[i] ][],c[i]);
//printf("root:%d",root);printf(" %d\n",f[root][0]);
}
}
void dfs(int root,int fa){ for(int i=first[root];i;i=next[i]){
if(to[i]==fa){
f[root][]=min(c[i],f[fa][]+f[fa][]-min(c[i],f[root][]));
}
}
for(int i=first[root];i;i=next[i]){
if(to[i]==fa)continue;
dfs(to[i],root);
}
long long t=0ll;
if(f[root][]!=(INF>>) )t+=f[root][];
if(f[root][]!=INF)t+=f[root][];
if(ans<t)ans=t;
}
int aa;
int main()
{
//freopen("degree.in","r",stdin);
//freopen("degree.out","w",stdout);
scanf("%d",&aa);
for(int k=;k<=aa;k++){
memset(first,,sizeof(first));
memset(next,,sizeof(next));
memset(to,,sizeof(to));
memset(c,,sizeof(c));
memset(f,,sizeof(f));
ans=0ll;
edge_count=; scanf("%d",&n);
for(int i=,a,b,w;i<n;++i){
scanf("%d%d%d",&a,&b,&w);
add(a,b,w);
add(b,a,w);
}
search(,);
if(!next[ first[] ])f[][]=INF>>;
dfs(,);
printf("%lld\n",ans);
}
return ;
}

Accumulation Degree的更多相关文章

  1. poj3585 Accumulation Degree【树形DP】【最大流】

    Accumulation Degree Time Limit: 5000MS   Memory Limit: 65536K Total Submissions:3151   Accepted: 783 ...

  2. POJ3585:Accumulation Degree(换根树形dp)

    Accumulation Degree Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3425   Accepted: 85 ...

  3. poj 3585 Accumulation Degree(二次扫描和换根法)

    Accumulation Degree 大致题意:有一棵流量树,它的每一条边都有一个正流量,树上所有度数为一的节点都是出口,相应的树上每一个节点都有一个权值,它表示从这个节点向其他出口可以输送的最大总 ...

  4. poj3585 Accumulation Degree[树形DP换根]

    思路其实非常简单,借用一下最大流求法即可...默认以1为根时,$f[x]$表示以$x$为根的子树最大流.转移的话分两种情况,一种由叶子转移,一种由正常孩子转移,判断一下即可.换根的时候由頂向下递推转移 ...

  5. POJ 3585 Accumulation Degree

    二次扫描与换根法 用于解决无根树,对于每一个节点作为根时都要统计 做法: 1.先以任意一个节点为根,做树形DP,保存每个节点的DP值 2.然后自上而下dfs,对于每个节点考虑以他为根的最大值 #inc ...

  6. 【POJ3585】Accumulation Degree 二次扫描与换根法

    简单来说,这是一道树形结构上的最大流问题. 朴素的解法是可以以每个节点为源点,单独进行一次dp,时间复杂度是\(O(n^2)\) 但是在朴素求解的过程中,相当于每次都求解了一次整棵树的信息,会做了不少 ...

  7. POJ3585 Accumulation Degree(二次扫描与换根法)

    题目:http://poj.org/problem?id=3585 很容易想出暴力.那么就先扫一遍. 然后得到了指定一个根后每个点的子树值. 怎么转化利用一下呢?要是能找出当前点的父亲的 “ 不含当前 ...

  8. [POJ3585]Accumulation Degree

    题面 \(\text{Solution:}\) 有些题目不仅让我们做树型 \(\text{dp}\) ,而且还让我们换每个根分别做一次, 然后这样就愉快的 \(\text{TLE}\) 了,所以我们要 ...

  9. POJ3585 Accumulation Degree 【树形dp】

    题目链接 POJ3585 题解 -二次扫描与换根法- 对于这样一个无根树的树形dp 我们先任选一根进行一次树形dp 然后再扫一遍通过计算得出每个点为根时的答案 #include<iostream ...

随机推荐

  1. Hadoop Mapreduce分区、分组、二次排序

    1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partiti ...

  2. vscode在vue-cli中按照ESlint自动格式化代码

    先安装 1 npm i -S eslint-plugin-vue .eslintrc下 1 2 3 "plugins": [     "vue" ] vscod ...

  3. JS自动微信消息轰炸

    打开网页版本微信,按f12,以console台 输入下边这段代码 setInterval(function(){$('.edit_area').html('需要发送的文字');$(".edi ...

  4. Linux 学习 (十一) 软件安装管理

    Linux软件安装管理 学习笔记 软件包简介 软件包分类: 源码包 :脚本安装包 二进制包(RPM 包.系统默认包) 源码包的优点: 开源,如果有足够的能力,可以修改源代码 可以自由选择所需的功能 软 ...

  5. poj-3281(拆点+最大流)

    题意:有n头牛,f种食物,d种饮料,每头牛有自己喜欢的食物和饮料,问你最多能够几头牛搭配好,每种食物或者饮料只能一头牛享用: 解题思路:把牛拆点,因为流过牛的流量是由限制的,只能为1,然后,食物和牛的 ...

  6. #!/usr/bin/python3的作用 解决vscode ImportError: No module named xxxx

    在 Python 脚本的第一行经常见到这样的注释: #!/usr/bin/env python3 或者 #!/usr/bin/python3 含义 在脚本中, 第一行以 #! 开头的代码, 在计算机行 ...

  7. fzyzojP1635 -- 平均值

    做法大概有两种: 1.二分平均值,每个值减去平均值,求有没有一个区间的总和大于等于0 (类比,中位数是二分之后,比mid大的为1,小的为0,看有没有区间大于等于0这样) 最值问题——判定问题 单调队列 ...

  8. Linux下安装部署Samba共享盘的操作手册

    简述 Samba是在Linux和UNIX系统上实现SMB协议的一个免费软件,由服务器及客户端程序构成.SMB(Server Messages Block,信息服务块)是一种在局域网上共享文件和打印机的 ...

  9. django+mysql简单总结

    1.工程下建立APP(以WIN10+PYTHON3.6为例) C:\Users\WYS>django-admin startproject myweb  #建立项目 C:\Users\WYS&g ...

  10. A Reliability-Aware Network Service Chain Provisioning With Delay Guarantees in NFV-Enabled Enterprise Datacenter Networks

    文章名称:A Reliability-Aware Network Service Chain Provisioning With Delay Guarantees in NFV-Enabled Ent ...