LOJ.6435.[PKUSC2018]星际穿越(倍增)
参考这儿qwq。
首先询问都是求,向左走的最短路。
\(f[i][j]\)表示从\(i\)走到\(j\)最少需要多少步。表示这样只会\(O(n^2\log n)\)的= =但是感觉能卡过\(70\)分。
注意到从\(i\)出发,走\(j\)步能到达的点都是一段一段的。所以不妨令\(f[i][j]\)表示,从\(i\)出发,走\(j\)步能到达的最左边的是什么。那么\(f[i][j+1]=\min\limits_{k=f[i][j]}^{i-1}L[k]\)。
但是我们还没有考虑向右走的情况。可以发现一条路径最多只会向右走一次。
那么判一下就好惹。这样就可以\(O(n^2)\)啦。
注意到这一过程实际可以倍增:\(f[i][j]\)表示,从\(i\)出发,走\(2^j\)步最左可以到哪。但是还要考虑第一步向右走的情况,所以不妨直接令它表示,\(i\sim n\)这些点走\(2^j\)步最左可以到哪。
记\(Calc(i,p)\)表示,从\(i\)分别走到\(p\sim i\)所有点总共需要走多远。把询问\([l,r]\)拆成\(Calc(i,l)-Calc(i,r+1)\)。
那么再维护一个\(sum[i][j]\)表示,从\(i\)出发,分别走到\(f[i][j]\sim i\)总共需要走多远。那么\(sum[i][j]=sum[i][j-1]+sum[f[i][j-1]][j-1]+(f[i][j]-f[i][j-1])\times2^{j-1}\)。
具体\(Calc\)的时候,关于向右走一步的处理,不妨直接让\(i\)先向左走一步走到\(L[i]\)。这样\(L[i]\)左边的部分都有可能需要\(i\)向右走,但是这正好符合\(f\)的定义,同时我们已经跳了一步也可以看作向右跳了一步。
注意维护一个变量\(tot\)表示之前一共跳过了多少距离。
还有主席树的做法,我不写惹qwq 懒。
//3272ms 68628K / 69284kb 8496ms
#include <cstdio>
#include <cctype>
#include <algorithm>
#define BIT 18
#define gc() getchar()
#define MAXIN 500000
//#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=3e5+5;
int L[N],f[BIT+1][N];
LL sum[BIT+1][N];
char IN[MAXIN],*SS=IN,*TT=IN;
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
int Gcd(int a,int b)
{
return b?Gcd(b,a%b):a;
}
LL Calc(int l,int p,const int bit)
{
if(L[p]<=l) return p-l;
LL ans=p-L[p],tot=1; p=L[p];
for(int i=bit; ~i; --i)
if(f[i][p]>=l) ans+=sum[i][p]+(p-f[i][p])*tot, tot+=1<<i, p=f[i][p];
return ans+(p-l)*(tot+1);//(r-l)*tot+r-l
}
int main()
{
const int n=read(); int bit=23;
while(1<<bit>n) --bit;
for(int i=2; i<=n; ++i) L[i]=read();
f[0][n]=L[n];
for(int i=n-1; i; --i) f[0][i]=std::min(f[0][i+1],L[i]), sum[0][i]=i-f[0][i];
for(int j=1; j<=bit; ++j)
{
LL t=1ll<<j-1;
for(int i=1; i<=n; ++i)
f[j][i]=f[j-1][f[j-1][i]], sum[j][i]=sum[j-1][i]+sum[j-1][f[j-1][i]]+(f[j-1][i]-f[j][i])*t;
}
for(int Q=read(); Q--; )
{
int l=read(),r=read(),x=read(),b=r-l+1;
LL a=Calc(l,x,bit)-Calc(r+1,x,bit); int g=Gcd(b,a%b);
printf("%lld/%d\n",a/g,b/g);
}
return 0;
}
LOJ.6435.[PKUSC2018]星际穿越(倍增)的更多相关文章
- [Luogu 5465] [LOJ 6435] [PKUSC2018]星际穿越(倍增)
[Luogu 5465] [LOJ 6435] [PKUSC2018]星际穿越(倍增) 题面 n个点的图,点i和[l[i],i)的所有点连双向边.每次询问(l,r,x)表示x到[l,r]的所有点的最短 ...
- [PKUSC2018]星际穿越(倍增)
题意:n个点的图,点i和[l[i],i)的所有点连双向边.每次询问(l,r,x)表示x到[l,r]的所有点的最短路径长度和. 首先这题显然可以线段树优化建图,但是需要比较好的常数才能通过45分,还需要 ...
- [PKUSC2018]星际穿越
[PKUSC2018]星际穿越 题目大意: 有一排编号为\(1\sim n\)的\(n(n\le3\times10^5)\)个点,第\(i(i\ge 2)\)个点与\([l_i,i-1]\)之间所有点 ...
- LOJ #6435. 「PKUSC2018」星际穿越(倍增)
题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...
- BZOJ5371[Pkusc2018]星际穿越——可持久化线段树+DP
题目描述 有n个星球,它们的编号是1到n,它们坐落在同一个星系内,这个星系可以抽象为一条数轴,每个星球都是数轴上的一个点, 特别地,编号为i的星球的坐标是i. 一开始,由于科技上的原因,这n个星球的居 ...
- 【洛谷5465】[PKUSC2018] 星际穿越(倍增)
点此看题面 大致题意: 给定\(l_{2\sim n}\),其中\(l_i\)表示\([l_i,i-1]\)的所有点与\(i\)之间存在一条长度为\(1\)的双向路径.每次询问给出\(l,r,x\), ...
- LOJ6435 PKUSC2018 星际穿越
这个题吧当时在考场只得了45分 然后70分的性质都分析到了 不知道为啥就是写萎蛋了 哎 当时还是too young too simple 看了一下julao们的博客这个题有两种做法 一个是比较费脑子的 ...
- 2019.03.09 bzoj5371: [Pkusc2018]星际穿越(主席树)
传送门 题意简述: 给一个序列,对于第iii个位置,它跟[limi,i−1][lim_i,i-1][limi,i−1]这些位置都存在一条长度为111的无向边. 称dist(u,v)dist(u,v) ...
- 题解 洛谷 P5465 【[PKUSC2018]星际穿越】
首先考虑题目的性质,发现点向区间连的边为双向边,所以也就可以从一个点向右跳到区间包含该点的点,如图所示: 但事实上向后跳其实是不优的,可以有更好的方法来节省花费: 因此我们发现一个点跳到其前一个区间的 ...
随机推荐
- Aras前端的一些知识
top.aras包含了aras前端大部分的API /* * uiShowItem * 打开物体视窗 * parameters: * 1) itemTypeName - may be empty str ...
- D. Vanya and Treasure Codeforces Round #355 (Div. 2)
http://codeforces.com/contest/677/problem/D 建颗新树,节点元素包含r.c.dis,第i层包含拥有编号为i的钥匙的所有节点.用i-1层更新i层,逐层更新到底层 ...
- luogu P5319 [BJOI2019]奥术神杖
传送门 要求的东西带个根号,这玩意叫几何平均数,说到平均数,我们就能想到算术平均数(就是一般意义下的平均数),而这个东西是一堆数之积开根号,所以如果每个数取对数,那么乘法会变成加法,开根号变成除法,所 ...
- linux常用命令【原创】
查看文件内容-while: cat 1.txt|while read line;do echo $line;done while read line; do echo $line; done < ...
- Win 10中使用图片查看器
在Win10中,照片应用提供了时间线.专辑等更丰富的图片管理功能,但是对于基于文件夹打开浏览图片的方式显得笨拙, 放大缩小操作略繁琐,有时还会出现当前文件夹图片加载迟缓导致无法快速浏览的问题. 此时你 ...
- docker-compose部署ELK
本章基于 https://www.cnblogs.com/lirunzhou/p/10550675.html 在此基础上将ELK系统docker-compose.yml化. 其docker-compo ...
- javascript 常用方法 解析URL,补充前导字符
2018-11-7 20:41:20 星期三 1. 解析URL function parseUrl(url){ url = decodeURIComponent(url); var u = url.s ...
- Go语言--基础语法笔记
### 换了工作,好久没有添加新文章了,本来是想更新到github上的,想想还是在博客里放着,感觉以前的文章都没有很仔细,都只是问题处理的记录, 以后想新加一些整理的笔记也好 ### 主要内容 2.1 ...
- 一位6年老Android面经总结
声明|作者:android进阶者地址:https://www.jianshu.com/p/d77873cbad5f 前言 准备面试其实已经准备了挺久了,当时打算面试准备了差不多以后,跟公司谈谈涨薪的事 ...
- MQTT控制---connect
连接服务端 客户端到服务端的第一个报文必须是CONNECT,且只能发送一次,发送的第二个connect报文当作违规处理并断开连接. 有效载荷包含一个或者多个编码的字段.包括客户端的唯一标识符,Will ...