[物理学与PDEs]第2章习题5 正应力的平均值
设流场中流体的应力张量为 ${\bf P}=(p_{ij})$. 试证明: 在以某点为中心, $r$ 为半径的球面 $S_r$ 上的法向应力分量的平均值, 在 $r\to 0$ 时的极限为该点正应力的平均值, 即成立 $$\bex \lim_{r\to 0}\cfrac{1}{4\pi r^2}\int_{S_r}{\bf p}_n\cdot{\bf n}\rd S =\cfrac{1}{3}(p_{11}+p_{22}+p_{33}), \eex$$ 其中 ${\bf p}_n$ 由 (2. 5) 或 (2. 6) 式定义.
证明: 由于 $(p_{ij})$ 对称, 而存在正交阵 $Q_{(x)}$, 使得 $$\bex Q^T_{(x)}PQ_{(x)}=\diag(\lm_{1,(x)},\lm_{2,(x)},\lm_{3,(x)}). \eex$$ 于是 $$\beex \bea \lim_{r\to 0}\cfrac{1}{4\pi r^2}\int_{S_r}{\bf p}_n\cdot{\bf n}\rd S &=\lim_{r\to 0}\cfrac{1}{4\pi r^4} \int_{x_1^2+x_2^2+x_3^2=r^2}\sum_{i,j=1}^3x_ip_{ij}x_j\rd S_x \\ &=\lim_{r\to 0}\cfrac{1}{4\pi r^4} \int_{y_1^2+y_2^2+y_3^2=r^2} \sum_{i=1}^3 \lm_{i,(Q_{(x)}y)}y_i^2\rd S_y \quad\sex{x=Q_{(x)}y}\\ &=\lim_{r\to 0}\cfrac{1}{4\pi r^4} \int_{y_1^2+y_2^2+y_3^2=r^2} \sum_{i=1}^3 \sez{\lm_{i,(Q_{(x)}y)}-\lm_i}y_i^2\rd S_y\\ &\quad +\lim_{r\to 0}\cfrac{1}{4\pi r^4} \sum_{i=1}^3\lm_i\cdot \int_{y_1^2+y_2^2+y_3^2=r^2} y_i^2\rd S_y \\ &=\lim_{r\to 0}\cfrac{1}{4\pi r^4} \sum_{i=1}^3\lm_i \cdot\cfrac{1}{3} \int_{y_1^2+y_2^2+y_3^2=r^2} y_1^2+y_2^2+y_3^2\rd S_y \\ &=\cfrac{1}{3}\sum_{i=1}^3 \lm_i\\ &=\cfrac{1}{3}(p_{11}+p_{22}+p_{33}). \eea \eeex$$
[物理学与PDEs]第2章习题5 正应力的平均值的更多相关文章
- [物理学与PDEs]第2章习题参考解答
[物理学与PDEs]第2章习题1 无旋时的 Euler 方程 [物理学与PDEs]第2章习题2 质量力有势时的能量方程 [物理学与PDEs]第2章习题3 Laplace 方程的 Neumann 问题 ...
- [物理学与PDEs]第1章习题参考解答
[物理学与PDEs]第1章习题1 无限长直线的电场强度与电势 [物理学与PDEs]第1章习题2 均匀带电球面的电场强度与电势 [物理学与PDEs]第1章习题3 常场强下电势的定解问题 [物理学与PDE ...
- [物理学与PDEs]第3章习题参考解答
[物理学与PDEs]第3章习题1 只有一个非零分量的磁场 [物理学与PDEs]第3章习题2 仅受重力作用的定常不可压流理想流体沿沿流线的一个守恒量 [物理学与PDEs]第3章习题3电磁场的矢势在 Lo ...
- [物理学与PDEs]第4章习题参考解答
[物理学与PDEs]第4章习题1 反应力学方程组形式的化约 - 动量方程与未燃流体质量平衡方程 [物理学与PDEs]第4章习题2 反应力学方程组形式的化约 - 能量守恒方程 [物理学与PDEs]第4章 ...
- [物理学与PDEs]第5章习题参考解答
[物理学与PDEs]第5章习题1 矩阵的极分解 [物理学与PDEs]第5章习题2 Jacobian 的物质导数 [物理学与PDEs]第5章习题3 第二 Piola 应力张量的对称性 [物理学与PDEs ...
- [物理学与PDEs]第4章习题4 一维理想反应流体力学方程组的守恒律形式及其 R.H. 条件
写出在忽略粘性与热传导性, 即设 $\mu=\mu'=\kappa=0$ 的情况, 在 Euler 坐标系下具守恒律形式的一维反应流动力学方程组. 由此求出在解的强间断线上应满足的 R.H. 条件 ( ...
- [物理学与PDEs]第3章习题3电磁场的矢势在 Lorentz 规范下满足的方程
设 $\phi$ 及 ${\bf A}$ 分别为电磁场的标势及矢势 (见第一章 $\S$ 6). 试证明: 若 $\phi$ 及 ${\bf A}$ 满足条件 $$\bex \phi+\cfrac{1 ...
- [物理学与PDEs]第1章习题5 偶极子的电场强度
试计算由习题 4 给出的电偶极子的所形成的电场的电场强度. 解答: $$\beex \bea {\bf E}(P)&=\cfrac{1}{4\pi\ve_0} \sez{\cfrac{-q}{ ...
- [物理学与PDEs]第5章习题10 多凸函数一个例子
证明函数 $$\bex \hat W({\bf F})=\sedd{\ba{ll} \cfrac{1}{\det{\bf F}},&if\ \det{\bf F}>0,\\ +\inft ...
随机推荐
- 算法"新"名词
这个“新”是对于自己而言. 最近几天接触到很多新的名词,如: 回溯法(backtracking):以前知道,但很少用 动态规划(dynamic programming):序列型.矩阵型.区间型.背包等 ...
- Ubuntu 安装 Docker CE(社区版)
参考自 https://yeasy.gitbooks.io/docker_practice/install/ubuntu.html#ubuntu-1604- docker-io 是以前早期的版本,版本 ...
- Oracle 执行计划(一)-------基本介绍
本文参照自:https://www.cnblogs.com/Dreamer-1/p/6076440.html 打开SQL执行计划: 1.选中一句正在执行的SQL 2.F5快捷键,就会出现下图,这就是执 ...
- odoo中各视图写法
透视图: 还需要将一个pivot表添加到要待办任务(To-Do Tasks)中,请使用以下代码: <record id="view_pivot_todo_task" mode ...
- C#调用Delphi DLL获取字符串(C# IntPtr 与 string互转 )
前因后果 调用一门锁的dll实现读取酒店IC卡数据,直接用Readme里的方法出错. 函数声明: 一.读卡函数 ************************ Delphi 调用 ****** ...
- MySQL索引原理及慢查询优化(转自:美团tech)
背景 MySQL凭借着出色的性能.低廉的成本.丰富的资源,已经成为绝大多数互联网公司的首选关系型数据库.虽然性能出色,但所谓“好马配好鞍”,如何能够更好的使用它,已经成为开发工程师的必修课,我们经常会 ...
- JUC (java.util.concurrent)
1.什么是线程?什么是进程? 2.多线程的状态? public enum State { //6种状态 NEW, RUNNABLE, //可运行 BLOCKED, //阻塞 WAITING, //等待 ...
- 一键分享代码(提供能分享到QQ空间、新浪微博、人人网等的分享功能)
<html> <head></head> <body> <div class="xl_2"> <span styl ...
- tensorflow函数/重要功能实现
一.基础函数 1.1 .tf.reduce_sum(input_tensor, axis) Computes the sum of elements across dimensions of a ...
- Vue.js指令实例
v-if v-else v-show v-if 根据表达式的值的真假条件渲染元素. v-else 不需要表达式.前一兄弟元素必须有 v-if 或 v-else-if v-show 根据表达式之真假 ...