传送门

先考虑\(n=1\)的情况不是输入数据都告诉你了吗

然后考虑\(n=2\),可是光线是在弹来弹去的废话,然后射出去的光线是个等比数列求和的形式,也就是\(x_1\sum_{i=1}^{\infty} d^i=x_1\frac{1}{1-d}\),然后弹回去的光线第一个光线就是\(b_i\),然后后面也是等比数列求和,算一下就好了

\(n>2\),我们做完\(n-1\)后,可以把刚刚算过的玻璃看成一块,因为已经知道会射出去多少以及弹回去多少,然后就变成了\(n=2\),那么递推做即可

我写的是倒推,好像顺推也可以qwq

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<vector>
#include<cmath>
#include<ctime>
#include<queue>
#include<map>
#include<set>
#define LL long long
#define db double using namespace std;
const int N=5e5+10,mod=1e9+7,pc=570000004;
int rd()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9'){if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int fpow(int a,int b){int an=1;while(b){if(b&1) an=1ll*an*a%mod;a=1ll*a*a%mod,b>>=1;} return an;}
int inv(int a){return fpow(a,mod-2);}
int n,a[N],b[N],f[2],g[2]; int main()
{
n=rd();
for(int i=1;i<=n;++i) a[i]=1ll*rd()*pc%mod,b[i]=1ll*rd()*pc%mod;
int nw=1,la=0;
f[la]=a[n],g[la]=b[n];
for(int i=n-1;i;--i)
{
g[nw]=b[i];
int lt=a[i],s1,s2,t1,t2,dd;
s1=1ll*lt*f[la]%mod,lt=1ll*lt*g[la]%mod;
t1=1ll*lt*a[i]%mod,lt=1ll*lt*b[i]%mod;
s2=1ll*lt*f[la]%mod,lt=1ll*lt*g[la]%mod;
t2=1ll*lt*a[i]%mod;
dd=1ll*s2*inv(s1)%mod,f[nw]=1ll*s1*inv(mod+1-dd)%mod;
dd=1ll*t2*inv(t1)%mod,g[nw]=(g[nw]+1ll*t1*inv(mod+1-dd))%mod;
nw^=1,la^=1;
}
printf("%d\n",f[la]);
return 0;
}

luogu P5323 [BJOI2019]光线的更多相关文章

  1. [洛谷P5323][BJOI2019]光线

    题目大意:有$n$层玻璃,每层玻璃会让$a\%$的光通过,并把$b\%$的光反射.有一束光从左向右射过,问多少的光可以透过这$n$层玻璃 题解:事实上会发现,可以把连续的几层玻璃合成一层玻璃,但是要注 ...

  2. [BJOI2019]光线(递推)

    [BJOI2019]光线(递推) 题面 洛谷 题解 假装玻璃可以合并,假设前面若干玻璃的透光率是\(A\),从最底下射进去的反光率是\(B\),当前的玻璃的透光率和反光率是\(a,b\). 那么可以得 ...

  3. [BJOI2019]光线——递推

    题目链接: [BJOI2019]光线 设$F_{i}$表示从第$1$面玻璃上面向下射入一单位光线,穿过前$i$面玻璃的透光率. 设$G_{i}$表示从第$i$面玻璃下面向上射入一单位光线,穿过前$i$ ...

  4. [BJOI2019]光线[递推]

    题意 题目链接 分析 令 \(f_i\) 表示光线第一次从第一块玻璃射出第 \(i\) 块玻璃的比率. 令 \(g_i\) 表示光线射回第 \(i\) 块玻璃,再射出第 \(i\) 块玻璃的比率. 容 ...

  5. [BJOI2019] 光线

    看起来很麻烦,做起来并不难的题 以下设:$a_i=\frac{a_i}{100},b_i=\frac{b_i}{100}$ 显然,如果$b_i=0$的话,直接求$\Pi a_i$就是答案. 解决反射问 ...

  6. luogu P5324 [BJOI2019]删数

    传送门 不如先考虑暴力,能删的序列首先有\(1,2,3...n\),还有就是升序排序后从后往前放数,第\(i\)位要么放\(i\),要么放\(i+1\)位置的数,例如\(1,2,4,4,5,6,9,9 ...

  7. luogu P5322 [BJOI2019]排兵布阵

    传送门 普及dp 设\(f_{i,j}\)表示前\(i\)个城堡,用\(j\)人的最大价值,转移枚举一个对手,如果这个对手在\(i\)这个城堡人数是第\(k\)小的,那么用\(2a_i+1\)人可以得 ...

  8. luogu P5320 [BJOI2019]勘破神机

    传送门 首先我们要知道要求什么.显然每次放方块要放一大段不能从中间分开的部分.设\(m=2\)方案为\(f\),\(m=3\)方案为\(g\),\(m=2\)可以放一个竖的,或者两个横的,所以\(f_ ...

  9. luogu P5319 [BJOI2019]奥术神杖

    传送门 要求的东西带个根号,这玩意叫几何平均数,说到平均数,我们就能想到算术平均数(就是一般意义下的平均数),而这个东西是一堆数之积开根号,所以如果每个数取对数,那么乘法会变成加法,开根号变成除法,所 ...

随机推荐

  1. Linux学习之路(三)Shell脚本初探

    本文参考链接:http://www.runoob.com/linux/linux-shell.html 基本说明 Shell脚本(shell script)是一种为shell编写的脚本程序.其中she ...

  2. 最好用的jQuery-Ajax缓存插件

    AJAX-Cache    最好用的jQuery-Ajax缓存插件 介绍 AJAX-Cache是一款jQuery插件,基于localStorage/sessionStorage实现异步请求缓存功能,并 ...

  3. docker容器安装vi (一般容器都是Debian GNU/Linux 9)

    在使用docker容器时,同时你docker里的系统正好是debian或ubuntu的时候,有时候里边没有安装vim,敲vim命令时提示说:vim: command not found,这个时候就需要 ...

  4. Binwalk的安装和使用

    Binwalk的安装和使用 一.安装Git 参考链接:https://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067 ...

  5. ngxin 配置ssl

    1.上aliyun.com 申请免费ssl证书, 登录aliyun后搜索 “ca证书” , 申请使用“文件验证”,把文件传到服务器指定目录上,验证即可. 2.然后下载证书, 解压后传到服务器上, 在n ...

  6. 将WTL应用向导添加到VS2019

    WTL 简介 WTL 全称是 Windows Template Library,像 MFC 一样使用 C++ 的面向对象技术对 Win32 接口进行了封装,使之便于开发 Windows 程序.相对于 ...

  7. (light oj 1319) Monkey Tradition 中国剩余定理(CRT)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1319 In 'MonkeyLand', there is a traditional ...

  8. CSS中字距,词距,首行缩进,字体大小,排版相关问题的探讨

    先说明下,这是在谷歌浏览器下字体显示等问题做个研究,火狐下有点差异,不过火狐占有率低,而且显示的没有谷歌那么合理,不管它先.IE卡的要死,半死不活,也懒得深入研究这些细节,字体排版上不是强迫症,差别也 ...

  9. tensorflow-TensorBoard

    Tensorborad--> 是Tensorflow的可视化工具,它可以通过Tensorflow程序运行过程中输出的日志文件可视化Tensorflow程序的运行状态.Tensorflow和Ten ...

  10. 微信小程序之:wepy框架

    1.介绍 WePY 是 腾讯 参考了Vue 等框架对原生小程序进行再次封装的框架,更贴近于 MVVM 架构模式, 并支持ES6/7的一些新特性. 2.使用 npm install -g wepy-cl ...