一、TensorFlow的简介和安装和一些基本概念
1、Tensorflow的简介
就是一个科学计算的库,用于数据流图(张量流,可以理解成一个N维得数组)。
Tensorflow支持CPU和GPU,内部实现了对于各种目标函数求导的方式。
2、Tensorflow的安装(python3.5以上)
# pip install tensorflow==1.4.0 安装cpu版本
# pip install tensorflow-gpu 安装gpu版本
# pip3.6 install tensorflow -i http://mirrors.aliyun.com/pypi/simple --trusted-host mirrors.aliyun.com 使用阿里云镜像安装
3、基本概念
图(graph):描述计算过程
张量(tensor):数据,每个tensor是一个类型化的多维数组
操作(op):一个op获得多个tensor,输入/输出
会话(session):图的op的操作执行,定义什么时候运行
变量(variable):过程被改变,用于维护状态
4、边
实线,表述数据依赖,从前到后,叫前向传播,x-->y,而残差从后向前流动一遍,就是反向传播
虚线,表示控制依赖,用于控制操作的运行。
5、数据属性
tf.float32/64 32/64位浮点型
tf.int64/32/16/8 有符号整型
tf.uint8 无符号整型
tf.string 字节数组
tf.bool 布尔型
tf.complex64 由32位浮点组成的复数
tf.qint8/32 用于量化操作的8/32位有符号整型
tf.qunit8 用于量化操作的8位无符号整型
6、节点,节点又称算子,它代表一个操作
数学运算:Add、Subtract、Multiply、Div、Exp、Log....
数组运算:Concat、Slice、Split、Constant、Rank、Shape....
矩阵运算:MatMul、Matrixlnverse....
有状态的操作:Variable、Assign....
神经网络构建:SoftMax、Sigmoid、ReLU...
检查点:Save、Restore....
队列和同步操作:Enqueue、Dequeue、MutexAcquire
控制张量流的操作:Merge、Switch、Enter、Leave....
7、程序结构
构建阶段和执行阶段
8、创建一个简单的图(全部是常量的)
# -- encoding:utf-8 -- import tensorflow as tf # 定义常量矩阵a(dype类型为常量,shape可构建矩阵类型)
a = tf.constant([[1,2],[3,4]],dtype=tf.int32)
b = tf.constant([5,6,7,8],dtype=tf.int32,shape=[2,2])
# 以a,b作为输入,进行矩阵的乘法操作matmul
c = tf.matmul(a,b)
g = tf.add(a,c) #op之间如果没有依赖关系,会并行处理
#调用session的run方法来执行矩阵 #log_device_placement是否打日志,默认不打日志
#allow_soft_placement是否动态使用CPU和GPU,默认为False
with tf.Session(config=tf.ConfigProto(log_device_placement=True,allow_soft_placement=True)) as sess1:
result = sess1.run(g)
# 结果是多个值,返回一个列表
# result = sess.run(fetches=[c,g])
print('type:{},value:{}'.format(type(result), result))
9、创建一个有变量的图
# -- encoding:utf-8 -- import tensorflow as tf
#定义一个变量w1
w1 = tf.Variable(initial_value=3.0,dtype=tf.float32,name='w1')
#定义一个常量
a =tf.constant(value=2.0,dtype=tf.float32,name='w1')
#定义一个变量w2
w2 = tf.Variable(w1.initialized_value() * a,name='w2') c = tf.add(w1,w2)
#进行全局变量初始化
init_op = tf.global_variables_initializer() with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
sess.run(init_op)
result = sess.run(c)
print("result:{}".format(result))
10、feed填充机制,在构建图使用placeholder类型的API临时替代任意操作的张量(占位符)
# -- encoding:utf-8 -- import tensorflow as tf #构建一个矩阵的乘法,但是矩阵在运行的时候给定 #dtype、shape、name
m1 = tf.placeholder(dtype=tf.float32,shape=[2,3],name='placeholder_m1')
m2 = tf.placeholder(dtype=tf.float32,shape=[3,2],name='placeholder_m2')
m3 = tf.matmul(m1,m2) init_op = tf.global_variables_initializer() with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
sess.run(init_op)
result = sess.run(fetches=[m3],feed_dict={m1: [[1,2,3],[4,5,6]],m2: [[1,2],[3,4],[5,6]]})
print('result:{}'.format(result))
11、变量进行更新操作,迭代操作
import tensorflow as tf a = tf.Variable(initial_value=0,dtype=tf.int32,name='v_x')
#变量a的更新
assign_op = tf.assign(ref = a,value = a+1) init_op = tf.global_variables_initializer() with tf.Session(config=tf.ConfigProto(log_device_placement=True)) as sess:
sess.run(init_op)
for i in range(5):
r_x = sess.run(a)
sess.run(assign_op)
print(r_x)
一、TensorFlow的简介和安装和一些基本概念的更多相关文章
- 人工智能 tensorflow框架-->简介及安装01
简介:Tensorflow是google于2015年11月开源的第二代机器学习框架. Tensorflow名字理解:图形边中流动的数据叫张量(Tensor),因此叫Tensorflow 既 张量流动 ...
- 第四百一十六节,Tensorflow简介与安装
第四百一十六节,Tensorflow简介与安装 TensorFlow是什么 Tensorflow是一个Google开发的第二代机器学习系统,克服了第一代系统DistBelief仅能开发神经网络算法.难 ...
- TensorFlow Serving简介
一.TensorFlow Serving简介 TensorFlow Serving是GOOGLE开源的一个服务系统,适用于部署机器学习模型,灵活.性能高.可用于生产环境. TensorFlow Ser ...
- Node.js 教程 01 - 简介、安装及配置
系列目录: Node.js 教程 01 - 简介.安装及配置 Node.js 教程 02 - 经典的Hello World Node.js 教程 03 - 创建HTTP服务器 Node.js 教程 0 ...
- Java Gradle入门指南之简介、安装与任务管理
这是一篇Java Gradle入门级的随笔,主要介绍Gradle的安装与基本语法,这些内容是理解和创建build.gradle的基础,关于Gradle各种插件的使用将会在其他随笔中介绍. ...
- 细细品味Storm_Storm简介及安装
Storm是由专业数据分析公司BackType开发的一个分布式实时数据处理软件,可以简单.高效.可靠地处理大量的数据流.Twitter在2011年7月收购该公司,并于2011年9月底正式将Storm项 ...
- VMware vSphere 5.1 简介与安装
虚拟化系列-VMware vSphere 5.1 简介与安装 标签: 虚拟化 esxi5.1 VMware vSphere 5.1 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 . ...
- Nutch搜索引擎(第2期)_ Solr简介及安装
1.Solr简介 Solr是一个高性能,采用Java5开发,基于Lucene的全文搜索服务器.同时对其进行了扩展,提供了比Lucene更为丰富的查询语言,同时实现了可配置.可扩展并对查询性能进行了优化 ...
- Node.js的简介和安装
一.Node.js的简介和安装 a) 什么是Node.js? Node.js是一个开发平台 让JavaScript运行在服务器端的开发平台 ---简单点说就是用JavaScript写服务器 ...
随机推荐
- 【esri-loader】帮助文档翻译 part1 是什么,怎么安装,为什么要用它
是什么 esri-loader是一个JavaScript库(包/模块,Web模块化编程的概念),用于在非Dojo框架的Web页面中加载ArcGIS API for JavaScript 3.x或4.x ...
- 【Android】用Cubism 2制作自己的Live2D——官方App样例源码学习(4)!
前言- 这是最后一个重要的类了——LAppLive2DManager,流程什么的也清晰了,话不多说我们来康康吧! LAppLive2DManager- public class LAppLive2DM ...
- javaFX笔记----ComboBox模仿qq账号下拉框删除账号
myComboBox.setCellFactory( new Callback<ListView<String>, ListCell<String>>() { @O ...
- LAMP动静分离安装(源码安装)
环境: 版本 IP地址 源码包版本 Centos7.5_mysql 192.168.111.3 mysql-5.7.24.tar.gz,cmake-3.13.1.tar.gz,boost_1_59_0 ...
- Jar 初步
前言 jar 是 java 文件中一种文件格式,用于将 .java 文件编译的字节码文件打包成 jar. 给 Java 应用打包 1. 新建一个 java 源文件 package cn.szxy; p ...
- ANT与SVN集成
需求描述:从SVN服务器检出最新代码,编译,打包,发布测试环境. 解决方案:使用ANT官网提供的扩展工具中的svnant检出代码. 环境介绍: 操作系统:windows 7 64bit ant版本:a ...
- WebStrom中实现Vue项目的快速启动
工具:WebStrom+vue 前提:你已经安装了node.js,vuejs,会创建vue项目等一系列的操作 发生场景:希望在WebStrom中能够快速启动vue的项目,省去npm install, ...
- 使用docker快速搭建nginx+php环境
在朋友的强烈推荐下,走上了docker之路.经过了繁琐的docker环境安装,看了下镜像/容器的简单使用,开始进行nginx+php环境的搭建,本文记录一下在安装过程中的笔记. 原文地址:代码汇个人博 ...
- 卸载或安装Git出现Invalid drive错误的解决方案【简记】
前言:工作中由于公司的电脑(SSD+HDD)硬盘(HDD)突然坏了,只剩下一个系统盘(SSD).然后就是有个比较紧急的需求正在做,申请换的新硬盘不能立刻换上,因为工作的机器不在公司,操作远程机器工作, ...
- 我的第一个python web开发框架(39)——后台接口权限访问控制处理
前面的菜单.部门.职位与管理员管理功能完成后,接下来要处理的是将它们关联起来,根据职位管理中选定的权限控制菜单显示以及页面数据的访问和操作. 那么要怎么改造呢?我们可以通过用户的操作步骤来一步步进行处 ...