The Closest M Points

http://acm.hdu.edu.cn/showproblem.php?pid=4347

参考博客:https://blog.csdn.net/acdreamers/article/details/44664645#commentBox

Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 98304/98304 K (Java/Others)
Total Submission(s): 7461    Accepted Submission(s): 2335

Problem Description
The course of Software Design and Development Practice is objectionable. ZLC is facing a serious problem .There are many points in K-dimensional space .Given a point. ZLC need to find out the closest m points. Euclidean distance is used as the distance metric between two points. The Euclidean distance between points p and q is the length of the line segment connecting them.In Cartesian coordinates, if p = (p1, p2,..., pn) and q = (q1, q2,..., qn) are two points in Euclidean n-space, then the distance from p to q, or from q to p is given by:

Can you help him solve this problem?
 
Input
In the first line of the text file .there are two non-negative integers n and K. They denote respectively: the number of points, 1 <= n <= 50000, and the number of Dimensions,1 <= K <= 5. In each of the following n lines there is written k integers, representing the coordinates of a point. This followed by a line with one positive integer t, representing the number of queries,1 <= t <=10000.each query contains two lines. The k integers in the first line represent the given point. In the second line, there is one integer m, the number of closest points you should find,1 <= m <=10. The absolute value of all the coordinates will not be more than 10000.
There are multiple test cases. Process to end of file.
 
Output
For each query, output m+1 lines:
The first line saying :”the closest m points are:” where m is the number of the points.
The following m lines representing m points ,in accordance with the order from near to far
It is guaranteed that the answer can only be formed in one ways. The distances from the given point to all the nearest m+1 points are different. That means input like this:
2 2
1 1
3 3
1
2 2
1
will not exist.
 
 
Sample Input
3 2
1 1
1 3
3 4
2
2 3
2
2 3
1
 
Sample Output
the closest 2 points are:
1 3
3 4
the closest 1 points are:
1 3
 
Author
HIT
 
Source
 
模板题
 #include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>
#include<cstdio>
#define N 50005
using namespace std; int n,m,id;//n是点数,m是维度,id是当前切的维度 struct sair{
int p[];
bool operator<(const sair &b)const{
return p[id]<b.p[id];
}
}_data[N],data[N<<];
int flag[N<<]; priority_queue<pair<double,sair> >Q; void build(int l,int r,int rt,int dep){
if(l>r) return;
flag[rt]=;
flag[rt<<]=flag[rt<<|]=-;
id=dep%m;
int mid=l+r>>;
nth_element(_data+l,_data+mid,_data+r+);
data[rt]=_data[mid];
// if(l==r) return;
build(l,mid-,rt<<,dep+);
build(mid+,r,rt<<|,dep+);
} void query(sair p,int k,int rt,int dep){
if(flag[rt]==-) return;
pair<double,sair> cur(,data[rt]);//获得当前节点
for(int i=;i<m;i++){//计算当前节点到P点的距离
cur.first+=(cur.second.p[i]-p.p[i])*(cur.second.p[i]-p.p[i]);
}
int idx=dep%m;
int fg=;
int x=rt<<;
int y=rt<<|;
if(p.p[idx]>=data[rt].p[idx]) swap(x,y);
if(~flag[x]) query(p,k,x,dep+);
//开始回溯
if(Q.size()<k){
Q.push(cur);
fg=;
}
else{
if(cur.first<Q.top().first){
Q.pop();
Q.push(cur);
}
if((p.p[idx]-data[rt].p[idx])*(p.p[idx]-data[rt].p[idx])<Q.top().first){
fg=;
}
}
if(~flag[y]&&fg){
query(p,k,y,dep+);
}
} sair ans[]; int main(){
while(~scanf("%d %d",&n,&m)){
for(int i=;i<=n;i++){
for(int j=;j<m;j++){
scanf("%d",&_data[i].p[j]);
}
}
build(,n,,);
int t,k;
scanf("%d",&t);
while(t--){
sair tmp;
for(int i=;i<m;i++){
scanf("%d",&tmp.p[i]);
}
scanf("%d",&k);
while(!Q.empty()){
Q.pop();
}
printf("the closest %d points are:\n",k);
query(tmp,k,,);
for(int i=;i<k;i++){
ans[i]=Q.top().second;
Q.pop();
}
for(int i=k-;i>=;i--){
for(int j=;j<m;j++){
if(!j) printf("%d",ans[i].p[j]);
else printf(" %d",ans[i].p[j]);
}
printf("\n");
}
}
}
}

The Closest M Points的更多相关文章

  1. 【BZOJ 3053】The Closest M Points

    KDTree模板,在m维空间中找最近的k个点,用的是欧几里德距离. 理解了好久,昨晚始终不明白那些“估价函数”,后来才知道分情况讨论,≤k还是=k,在当前这一维度距离过线还是不过线,过线则要继续搜索另 ...

  2. BZOJ 3053 The Closest M Points

    [题目分析] 典型的KD-Tree例题,求k维空间中的最近点对,只需要在判断的过程中加上一个优先队列,就可以了. [代码] #include <cstdio> #include <c ...

  3. 【kd-tree】bzoj3053 The Closest M Points

    同p2626.由于K比较小,所以不必用堆. #include<cstdio> #include<cstring> #include<cmath> #include& ...

  4. 【BZOJ】3053: The Closest M Points(kdtree)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3053 本来是1a的QAQ.... 没看到有多组数据啊.....斯巴达!!!!!!!!!!!!!!!! ...

  5. 【HDOJ】4347 The Closest M Points

    居然是KD解. /* 4347 */ #include <iostream> #include <sstream> #include <string> #inclu ...

  6. BZOJ3053: The Closest M Points

    题解: 我们可以事先在堆里放入插入m个inf然后不断的比较当前值与堆首元素的大小,如果小于的话进入. 估计函数也可以随便写写... query的时候貌似不用保留dir... return 0写在 wh ...

  7. bzoj 3053 HDU 4347 : The Closest M Points kd树

    bzoj 3053 HDU 4347 : The Closest M Points  kd树 题目大意:求k维空间内某点的前k近的点. 就是一般的kd树,根据实测发现,kd树的两种建树方式,即按照方差 ...

  8. 数据结构(KD树):HDU 4347 The Closest M Points

    The Closest M Points Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 98304/98304 K (Java/Ot ...

  9. poj:4091:The Closest M Points

    poj:4091:The Closest M Points 题目 描写叙述 每到饭点,就又到了一日几度的小L纠结去哪吃饭的时候了.由于有太多太多好吃的地方能够去吃,而小L又比較懒不想走太远,所以小L会 ...

  10. HDU 4347 - The Closest M Points - [KDTree模板题]

    本文参考: https://www.cnblogs.com/GerynOhenz/p/8727415.html kuangbin的ACM模板(新) 题目链接:http://acm.hdu.edu.cn ...

随机推荐

  1. jstack可以定位到线程堆栈

    java命令--jstack 工具 JVM调优之jstack找出最耗cpu的线程并定位代码 jstack可以定位到线程堆栈,根据堆栈信息我们

  2. 深入理解yield(三):yield与基于Tornado的异步回调

    转自:http://beginman.cn/python/2015/04/06/yield-via-Tornado/ 作者:BeginMan 版权声明:本文版权归作者所有,欢迎转载,但未经作者同意必须 ...

  3. pip 安装指定版本的python包

    pip install -v package_name==2.3

  4. python的类

    一.语法 python类的机制是 C++ 的类机制和 Modula-3 的类机制的混合体: 允许多继承的类继承机制,派生类可以重写它父类的任何方法,一个方法可以调用父类中重名的方法: 1.动态特性:  ...

  5. Hadoop2.0构成之HDFS2.0

    HDFS2.0之HA 主备NameNode: 1.主NameNode对外提供服务,备NameNode同步主NameNode元数据,以待切换: 2.主NameNode的信息发生变化后,会将信息写到共享数 ...

  6. CSS Web安全字体组合

    常用的字体组合 font-family属性是多种字体的名称,作为一个"应变"制度,以确保浏览器/操作系统之间的最大兼容性.如果浏览器不支持的第一个字体,它尝试下一个的字体. 你想要 ...

  7. PHP MySQL Order By

    ORDER BY 关键词用于对记录集中的数据进行排序. ORDER BY 关键词 ORDER BY 关键词用于对记录集中的数据进行排序. ORDER BY 关键词默认对记录进行升序排序. 如果你想降序 ...

  8. mysql更新(七) MySQl创建用户和授权

    14-补充内容:MySQl创建用户和授权   权限管理 我们知道我们的最高权限管理者是root用户,它拥有着最高的权限操作.包括select.update.delete.update.grant等操作 ...

  9. Spring中的ThreadPoolTaskExecutor

      在观察线上系统的运行情况下,发现在错误日志中有这类错误信息,org.springframework.core.task.TaskRejectedException,于是便对ThreadPoolTa ...

  10. Survival Coxph log-rank

    Difference between survdiff log-rank and coxph log-rank Ask Question 6 1 I'm using the survival pack ...