Loj 2008 小凸想跑步

  • \(S(P,p_0,p_1)<S(P,p_i,p_{i+1})\) 这个约束条件对于 \(P_x,P_y\) 是线性的,即将面积用向量叉积表示,暴力拆开,可得到 \(aP_x+bP_y+c<0\) 的形式,表示了一个半平面,其他每条边都确定了一个半平面.
  • 再将 \(P\) 在多边形内拆成 \(N-1\) 个半平面的限制,将这 \(2N-1\) 个半平面求交,得到的区域即为合法区域,除以总面积即得答案
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
inline int read()
{
int out=0,fh=1;
char jp=getchar();
while ((jp>'9'||jp<'0')&&jp!='-')
jp=getchar();
if (jp=='-')
fh=-1,jp=getchar();
while (jp>='0'&&jp<='9')
out=out*10+jp-'0',jp=getchar();
return out*fh;
}
const double eps=1e-8;
inline int dcmp(double x)
{
if(fabs(x)<=eps)
return 0;
return x>0;
}
const int MAXN=2e5+10;
struct v2
{
double x,y;
v2(double x=0,double y=0):x(x),y(y) {}
friend double operator * (const v2 &a,const v2 &b)
{
return a.x*b.y-a.y*b.x;
}
v2 operator + (const v2 &rhs) const
{
return v2(x+rhs.x,y+rhs.y);
}
v2 operator - (const v2 &rhs) const
{
return v2(x-rhs.x,y-rhs.y);
}
v2 operator ^ (const double &lambda) const
{
return v2(x*lambda,y*lambda);
}
double modulus()
{
return sqrt(x*x+y*y);
}
double angle()
{
return atan2(y,x);
}
bool operator < (const v2 &rhs) const
{
return x==rhs.x?y<rhs.y:x<rhs.x;
}
};
struct Line
{
v2 p,v;
double angle()
{
return v.angle();
}
friend bool operator < (Line a,Line b)
{
if(a.angle()!=b.angle())
return a.angle()<b.angle();
return a.v*b.v<0;
}
};
bool Onleft(Line L,v2 p)
{
return (L.v*(p-L.p))>0;
}
v2 Intersection(Line a,Line b)
{
v2 u=a.p-b.p;
double t=(b.v*u)/(a.v*b.v);
return a.p+(a.v^t);
}
#define x(I) poly[I].x
#define y(I) poly[I].y
int n,totl=0;
v2 poly[MAXN];
Line L[MAXN],q[MAXN];
v2 p[MAXN];
int head,tail;
void Hpi()
{
sort(L+1,L+1+totl);
q[head=tail=1]=L[1];
for(int i=2;i<=totl;++i)
{
while(head<tail && !Onleft(L[i],p[tail-1]))
--tail;
while(head<tail && !Onleft(L[i],p[head]))
++head;
++tail;
q[tail]=L[i];
if(head<tail && (q[tail].v*q[tail-1].v)==0)
{
--tail;
if(Onleft(q[tail],L[i].p))
q[tail]=L[i];
}
if(head<tail)
p[tail-1]=Intersection(q[tail-1],q[tail]);
}
while(head<tail && !Onleft(q[head],p[tail-1]))
--tail;
p[tail]=Intersection(q[tail],q[head]);
p[tail+1]=p[head];
double area=0;
v2 O=v2(0,0);
for(int i=head;i<=tail;++i)
area+=(O-p[i])*(O-p[i+1]);
area=fabs(area);
double ts=0;
for(int i=1;i<=n;++i)
ts+=(O-poly[i])*(O-poly[i+1]);
ts=fabs(ts);
printf("%.4lf\n",area/ts);
}
int main()
{
n=read();
for(int i=1; i<=n; ++i)
scanf("%lf%lf",&poly[i].x,&poly[i].y);
poly[n+1]=poly[1];
for(int i=1; i<=n; ++i)
{
++totl;
L[totl].p=poly[i];
L[totl].v=poly[i+1]-poly[i];
}
for(int i=2; i<=n; ++i)
{
int j=i+1;
double a=x(2)-x(1),b=y(2)-y(1);
double c=x(j)-x(i),d=y(j)-y(i);
double A=d-b,B=a-c,C=b*x(1)-a*y(1)+c*y(i)-d*x(i);
if(A==0 && B==0)
{
if(C<=0)
continue;
else
return puts("0.0000")&0;
}
++totl;
if(A==0)
L[totl].p=v2(0,-C/B);
else
L[totl].p=v2(-C/A,0);
L[totl].v=v2(-B,A);
if(i!=n && !Onleft(L[totl],poly[1]))
L[totl].v=(L[totl].v^(-1));
if(i==n && !Onleft(L[totl],poly[2]))
L[totl].v=(L[totl].v^(-1));
}
Hpi();
return 0;
}

Loj 2008 小凸想跑步的更多相关文章

  1. loj #2008. 「SCOI2015」小凸想跑步

    #2008. 「SCOI2015」小凸想跑步   题目描述 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 n nn 边形,N NN 个顶点按照逆时针从 0∼n−1 0 ...

  2. 「SCOI2015」小凸想跑步 解题报告

    「SCOI2015」小凸想跑步 最开始以为和多边形的重心有关,后来发现多边形的重心没啥好玩的性质 实际上你把面积小于的不等式列出来,发现是一次的,那么就可以半平面交了 Code: #include & ...

  3. 【BZOJ4445】[Scoi2015]小凸想跑步 半平面交

    [BZOJ4445][Scoi2015]小凸想跑步 Description 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸n边形,N个顶点按照逆时针从0-n-l编号.现 ...

  4. 【BZOJ4445】[SCOI2015]小凸想跑步(半平面交)

    [BZOJ4445][SCOI2015]小凸想跑步(半平面交) 题面 BZOJ 洛谷 题解 首先把点给设出来,\(A(x_a,y_a),B(x_b,y_b),C(x_c,y_c),D(x_d,y_d) ...

  5. 【bzoj4445 scoi2015】小凸想跑步

    题目描述 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 nn 边形, nn 个顶点按照逆时针从 00 ∼ n - 1n−1 编号.现在小凸随机站在操场中的某个位置,标 ...

  6. [SCOI2015]小凸想跑步

    题目描述 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 n 边形, nn 个顶点按照逆时针从 0 ∼n−1 编号.现在小凸随机站在操场中的某个位置,标记为p点.将 p ...

  7. BZOJ 4445 [Scoi2015]小凸想跑步:半平面交

    传送门 题意 小凸晚上喜欢到操场跑步,今天他跑完两圈之后,他玩起了这样一个游戏. 操场是个凸 $ n $ 边形,$ n $ 个顶点 $ P_i $ 按照逆时针从 $ 0 $ 至 $ n-1 $ 编号. ...

  8. 【LOJ】 #2008. 「SCOI2015」小凸想跑步

    题解 一道想法很简单的计算几何(由于我半平面交总是写不对,我理所当然的怀疑半平面交错了,事实上是我直线建错了) 首先我们对于两个凸包上的点设为\((x_0,y_0)\)和\((x_1,y_1)\)(逆 ...

  9. bzoj 4445 [SCOI2015] 小凸想跑步

    题目大意:一个凸包,随机一个点使得其与前两个点组成的面积比与其他相邻两个点组成的面积小的概率 根据题意列方程,最后求n条直线的交的面积与原凸包面积的比值 #include<bits/stdc++ ...

随机推荐

  1. TTFB

    TTFB    Time To First Byte 1.含义 最初的网络请求被发起”到“从服务器接收到第一个字节前”所花费的毫秒数 包含了 TCP连接时间,发送HTTP请求时间和获得响应消息第一个字 ...

  2. HDU 6015 Skip the Class

    Skip the Class 代码: #include<bits/stdc++.h> using namespace std; #define ll long long #define l ...

  3. JSON自定义排序

    var json=[{ Name:'张三', Addr:'重庆', Age:'20' },{ Name:'张三3', Addr:'重庆2', Age:'25' },{ Name:'张三2', Addr ...

  4. Ngnix location匹配规则

    Ngnix 站点:http://www.nginx.cn Location 匹配命令 ~ 波浪线表示执行一个正则匹配,区分大小写. ~* 表示执行一个正则匹配,不区分大小写. ^~ ^~表示普通字符匹 ...

  5. C++&C#外挂(内存修改)

    大学时候因为主修C#语言(当然现在做的是javaweb开发),那时在网上学了用C#做外挂的教程,外挂嘛,大家都懂的.这里只是低级的修改内存,不涉及到截获数据包.如果是欺骗服务器,修改服务器数据,那就难 ...

  6. 名称随id的变化而变化

    $("#user_id").change(function () { var uid = $(this).val(); if (uid == '') { $("#user ...

  7. configparser、subprocess模块

    一.configparser模块 该模块适用于配置文件的格式与windows ini文件类似,可以包含一个或多个节(section),每个节可以有多个参数(键=值). 1.创建文件 一般软件的常见文档 ...

  8. HDU-3507 Print Article (斜率优化)

    题目大意:将n个数分成若干个区间,每个区间的代价为区间和的平方加上一个常数m,求最小代价. 题目分析:定义状态dp(i)表示前 i 个数已经分好的最小代价,则状态转移方程为 dp(i)=min(dp( ...

  9. WinForm窗体下Excel的导入

    一.Winform窗体程序的Excel的导入 把Excel导入到内存中的DataTable 方法实现: #region ExcelToDataTable public static DataTable ...

  10. 自定义Spark Partitioner提升es-hadoop Bulk效率

    http://www.jianshu.com/p/cccc56e39429/comments/2022782 和 https://github.com/elastic/elasticsearch-ha ...