storm的流分组

用的是ShuffleGrouping分组方式,并行度设置为3


这是跑下来的结果

参考代码StormTopologyShufferGrouping.java
package yehua.storm;
import java.util.Map;
import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.StormSubmitter;
import org.apache.storm.generated.AlreadyAliveException;
import org.apache.storm.generated.AuthorizationException;
import org.apache.storm.generated.InvalidTopologyException;
import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.TopologyBuilder;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;
import org.apache.storm.utils.Utils;
/**
* shufferGrouping
* 没有特殊情况下,就使用这个分组方式,可以保证负载均衡,工作中最常用的
* @author yehua
*
*/
public class StormTopologyShufferGrouping {
public static class MySpout extends BaseRichSpout{
private Map conf;
private TopologyContext context;
private SpoutOutputCollector collector;
// @Override
public void open(Map conf, TopologyContext context,
SpoutOutputCollector collector) {
this.conf = conf;
this.collector = collector;
this.context = context;
}
int num = 0;
//@Override
public void nextTuple() {
num++;
System.out.println("spout:"+num);
this.collector.emit(new Values(num));
Utils.sleep(1000);
}
//@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("num"));
}
}
public static class MyBolt extends BaseRichBolt{
private Map stormConf;
private TopologyContext context;
private OutputCollector collector;
// @Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.stormConf = stormConf;
this.context = context;
this.collector = collector;
}
//@Override
public void execute(Tuple input) {
Integer num = input.getIntegerByField("num");
System.err.println("thread:"+Thread.currentThread().getId()+",num="+num);
}
//@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
}
}
public static void main(String[] args) {
TopologyBuilder topologyBuilder = new TopologyBuilder();
String spout_id = MySpout.class.getSimpleName();
String bolt_id = MyBolt.class.getSimpleName();
topologyBuilder.setSpout(spout_id, new MySpout());
topologyBuilder.setBolt(bolt_id, new MyBolt(),3).shuffleGrouping(spout_id);
Config config = new Config();
String topology_name = StormTopologyShufferGrouping.class.getSimpleName();
if(args.length==0){
//在本地运行
LocalCluster localCluster = new LocalCluster();
localCluster.submitTopology(topology_name, config, topologyBuilder.createTopology());
}else{
//在集群运行
try {
StormSubmitter.submitTopology(topology_name, config, topologyBuilder.createTopology());
} catch (AlreadyAliveException e) {
e.printStackTrace();
} catch (InvalidTopologyException e) {
e.printStackTrace();
} catch (AuthorizationException e) {
e.printStackTrace();
}
}
}
}
用fieldsGrouping方法

按奇偶数分组(也就是按字段分组)

从跑出来的结果看出来,一个线程处理奇数的一个线程处理偶数的

参考代码StormTopologyFieldsGrouping.java
package yehua.storm; import java.util.Map; import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.StormSubmitter;
import org.apache.storm.generated.AlreadyAliveException;
import org.apache.storm.generated.AuthorizationException;
import org.apache.storm.generated.InvalidTopologyException;
import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.TopologyBuilder;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;
import org.apache.storm.utils.Utils; /**
* FieldsGrouping
* 字段分组
* @author yehua
*
*/ public class StormTopologyFieldsGrouping { public static class MySpout extends BaseRichSpout{
private Map conf;
private TopologyContext context;
private SpoutOutputCollector collector;
//@Override
public void open(Map conf, TopologyContext context,
SpoutOutputCollector collector) {
this.conf = conf;
this.collector = collector;
this.context = context;
} int num = 0;
//@Override
public void nextTuple() {
num++;
System.out.println("spout:"+num);
this.collector.emit(new Values(num,num%2));
Utils.sleep(1000);
} //@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("num","flag"));
} } public static class MyBolt extends BaseRichBolt{ private Map stormConf;
private TopologyContext context;
private OutputCollector collector;
//@Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.stormConf = stormConf;
this.context = context;
this.collector = collector;
} //@Override
public void execute(Tuple input) {
Integer num = input.getIntegerByField("num");
System.err.println("thread:"+Thread.currentThread().getId()+",num="+num);
} //@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) { } } public static void main(String[] args) {
TopologyBuilder topologyBuilder = new TopologyBuilder();
String spout_id = MySpout.class.getSimpleName();
String bolt_id = MyBolt.class.getSimpleName(); topologyBuilder.setSpout(spout_id, new MySpout());
//注意:字段分组一定可以保证相同分组的数据进入同一个线程处理
topologyBuilder.setBolt(bolt_id, new MyBolt(),2).fieldsGrouping(spout_id, new Fields("flag")); Config config = new Config();
String topology_name = StormTopologyFieldsGrouping.class.getSimpleName();
if(args.length==0){
//在本地运行
LocalCluster localCluster = new LocalCluster();
localCluster.submitTopology(topology_name, config, topologyBuilder.createTopology());
}else{
//在集群运行
try {
StormSubmitter.submitTopology(topology_name, config, topologyBuilder.createTopology());
} catch (AlreadyAliveException e) {
e.printStackTrace();
} catch (InvalidTopologyException e) {
e.printStackTrace();
} catch (AuthorizationException e) {
e.printStackTrace();
}
} } }
这里补充一下,比如说有两类数据3个线程的时候

我们再看看运行结果,发现只有两个线程干活了

还有一种情况,只有一个线程的情况,还是两类数据

从运行结果看出来,所有话一个进程干完了

allGrouping方法

运行结果:spout每发一条数据三个进程都接收到了(基本没什么应用场景)

参考代码StormTopologyAllGrouping.java
package yehua.storm; import java.util.Map; import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.StormSubmitter;
import org.apache.storm.generated.AlreadyAliveException;
import org.apache.storm.generated.AuthorizationException;
import org.apache.storm.generated.InvalidTopologyException;
import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.TopologyBuilder;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;
import org.apache.storm.utils.Utils; /**
* AllGrouping
* 广播分组
* @author yehua
*
*/ public class StormTopologyAllGrouping { public static class MySpout extends BaseRichSpout{
private Map conf;
private TopologyContext context;
private SpoutOutputCollector collector;
//@Override
public void open(Map conf, TopologyContext context,
SpoutOutputCollector collector) {
this.conf = conf;
this.collector = collector;
this.context = context;
} int num = 0;
//@Override
public void nextTuple() {
num++;
System.out.println("spout:"+num);
this.collector.emit(new Values(num));
Utils.sleep(1000);
} //@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("num"));
} } public static class MyBolt extends BaseRichBolt{ private Map stormConf;
private TopologyContext context;
private OutputCollector collector;
//@Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.stormConf = stormConf;
this.context = context;
this.collector = collector;
} //@Override
public void execute(Tuple input) {
Integer num = input.getIntegerByField("num");
System.err.println("thread:"+Thread.currentThread().getId()+",num="+num);
} //@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) { } } public static void main(String[] args) {
TopologyBuilder topologyBuilder = new TopologyBuilder();
String spout_id = MySpout.class.getSimpleName();
String bolt_id = MyBolt.class.getSimpleName(); topologyBuilder.setSpout(spout_id, new MySpout());
topologyBuilder.setBolt(bolt_id, new MyBolt(),3).allGrouping(spout_id); Config config = new Config();
String topology_name = StormTopologyAllGrouping.class.getSimpleName();
if(args.length==0){
//在本地运行
LocalCluster localCluster = new LocalCluster();
localCluster.submitTopology(topology_name, config, topologyBuilder.createTopology());
}else{
//在集群运行
try {
StormSubmitter.submitTopology(topology_name, config, topologyBuilder.createTopology());
} catch (AlreadyAliveException e) {
e.printStackTrace();
} catch (InvalidTopologyException e) {
e.printStackTrace();
} catch (AuthorizationException e) {
e.printStackTrace();
}
} } }
LocalOrShufferGrouping方法

spout只会给同一个主机的线程发送数据(图中的线程1),也就是在同一个线程里会被发送数据,这样做的好处就是在同一个进程里发送数据效率搞,不用跨主机传输
但是当数据量太大的时候,线程1处理不了的时候就麻烦了,所以在实际工作中不建议这样做。
这里用的是3个线程(3个bolt),2个进程(2个worker)

从运行的结果我们可以看出来,只有一个线程在接收数据

还有一种情况,如果本地没有线程的时候,他就跟ShufferGrouping的效果一样的

参考代码StormTopologyLocalOrShufferGrouping.java
package yehua.storm; import java.util.Map; import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.StormSubmitter;
import org.apache.storm.generated.AlreadyAliveException;
import org.apache.storm.generated.AuthorizationException;
import org.apache.storm.generated.InvalidTopologyException;
import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.TopologyBuilder;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values;
import org.apache.storm.utils.Utils; /**
* LocalAllshufferGrouping
* @author yehua
*
*/ public class StormTopologyLocalOrShufferGrouping { public static class MySpout extends BaseRichSpout{
private Map conf;
private TopologyContext context;
private SpoutOutputCollector collector;
//@Override
public void open(Map conf, TopologyContext context,
SpoutOutputCollector collector) {
this.conf = conf;
this.collector = collector;
this.context = context;
} int num = 0;
//@Override
public void nextTuple() {
num++;
System.out.println("spout:"+num);
this.collector.emit(new Values(num));
Utils.sleep(1000);
} //@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("num"));
} } public static class MyBolt extends BaseRichBolt{ private Map stormConf;
private TopologyContext context;
private OutputCollector collector;
//@Override
public void prepare(Map stormConf, TopologyContext context,
OutputCollector collector) {
this.stormConf = stormConf;
this.context = context;
this.collector = collector;
} //@Override
public void execute(Tuple input) {
Integer num = input.getIntegerByField("num");
System.err.println("thread:"+Thread.currentThread().getId()+",num="+num);
} //@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) { } } public static void main(String[] args) {
TopologyBuilder topologyBuilder = new TopologyBuilder();
String spout_id = MySpout.class.getSimpleName();
String bolt_id = MyBolt.class.getSimpleName(); topologyBuilder.setSpout(spout_id, new MySpout());
topologyBuilder.setBolt(bolt_id, new MyBolt(),3).localOrShuffleGrouping(spout_id); Config config = new Config();
config.setNumWorkers(2);
String topology_name = StormTopologyLocalOrShufferGrouping.class.getSimpleName();
if(args.length==0){
//在本地运行
LocalCluster localCluster = new LocalCluster();
localCluster.submitTopology(topology_name, config, topologyBuilder.createTopology());
}else{
//在集群运行
try {
StormSubmitter.submitTopology(topology_name, config, topologyBuilder.createTopology());
} catch (AlreadyAliveException e) {
e.printStackTrace();
} catch (InvalidTopologyException e) {
e.printStackTrace();
} catch (AuthorizationException e) {
e.printStackTrace();
}
} } }
storm的流分组的更多相关文章
- 简单聊聊Storm的流分组策略
简单聊聊Storm的流分组策略 首先我要强调的是,Storm的分组策略对结果有着直接的影响,不同的分组的结果一定是不一样的.其次,不同的分组策略对资源的利用也是有着非常大的不同,本文主要讲一讲loca ...
- Storm Grouping —— 流分组策略
Storm Grouping: Shuffle Grouping :随机分组,尽量均匀分布到下游Bolt中 将流分组定义为混排.这种混排分组意味着来自Spout的输入将混排,或随机分发给此Bolt中的 ...
- Storm流分组介绍
Storm流分组介绍 流分组是拓扑定义的一部分,每个Bolt指定应该接收哪个流作为输入.流分组定义了流/元组如何在Bolt的任务之间进行分发.在设计拓扑的时候需要定义数据 ...
- Storm Topology及分组原理
Storm的通信机制,需要满足如下一些条件以满足Storm的语义. 1.建立数据传输的缓冲区.在通信连接没有建立之前把发送的数据缓存起来.数据发送方可以在连接建立之前发送消息,而不需要等连接建立起来, ...
- Stream grouping-storm的流分组策略
A stream grouping tells a topology how to send tuples between two components. Remember, spouts and b ...
- Storm 学习之路(一)—— Storm和流处理简介
一.Storm 1.1 简介 Storm 是一个开源的分布式实时计算框架,可以以简单.可靠的方式进行大数据流的处理.通常用于实时分析,在线机器学习.持续计算.分布式RPC.ETL等场景.Storm具有 ...
- Storm 系列(一)—— Storm和流处理简介
一.Storm 1.1 简介 Storm 是一个开源的分布式实时计算框架,可以以简单.可靠的方式进行大数据流的处理.通常用于实时分析,在线机器学习.持续计算.分布式 RPC.ETL 等场景.Storm ...
- Storm实时流处理Hello World
近来在看Storm的相关资料,以下总结一下配置过程和Hello World例子. Storm是分布式的实时计算系统.详细文档可参考Storm网站,也可以参阅<Getting started wi ...
- java8 新特性 Stream流 分组 排序 过滤 多条件去重
private static List<User> list = new ArrayList<User>(); public static void main(String[] ...
随机推荐
- 第三篇 makefile的伪目标
我们来思考一下makefile中的目标究竟是什么?实际上,在默认情况下: 1.make将makefile的目标认为是一个文件: 2.make解释器比较目标文件和依赖文件的新旧关系,决定是否 ...
- Linux Foundation(笔记)
/************************************************************* * Linux Foundation * 1. 总结一下Linux的基础内 ...
- 20155220 2016-2017-2 《Java程序设计》第九周学习总结
20155220 2016-2017-2<Java程序设计>第九周学习总结 教材学习内容总结 JDBC(Java DataBase Connectivity)即java数据库连接,是一种用 ...
- 区间DP(总结)
学长一晚上的耐心讲解,使我明白区间DP这么高级的东西,还是挺容易的.也就是在一段区间内的动态规划. 下面用例题进行总结. 例题:石子归并. 描述 有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石 ...
- HDU 2072 单词数 详细解答
题目 单词数 Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Submis ...
- 谨慎使用 FileInfo.Exists 实例方法,而是使用 File.Exists 静态方法替代
如果你在代码中使用了 FileInfo.Exists 实例方法来判断一个文件是否存在,也许会发现此方法可能错误地判断来一个文件是否真的存在.这是一个坑. 本文将介绍坑的原因,并提供填坑的办法. 本文内 ...
- hello1与hello2在glassfish上部署
部署hello1 打开项目实例 找到hello1(tutorial-examples-master\web\jsf\hello1) 并在当前目录打开cmd并输入mvn install命令在hello1 ...
- UVa 10410 树重建
Tree Reconstruction Problem Description You have just finished a compiler design homework question w ...
- python pandas Timestamp 转为 datetime 类型
In [11]: ts = pd.Timestamp('2014-01-23 00:00:00', tz=None) In [12]: ts.to_pydatetime() Out[12]: date ...
- vault 集群搭建(active standby 模式)
参考架构图: consul server cluster 搭建 consul 基本配置格式 { "server": true, "node_name": ...