Python Redis pipeline操作和Redis乐观锁保持数据一致性
Redis是建立在TCP协议基础上的CS架构,客户端client对redis server采取请求响应的方式交互。
redis 乐观锁:也可理解为版本号比较机制,主要是说在读取数据逇时候同时读取其版本号,然后在写入的时候,进行版本号比较,如果一致,则表明此数据在监听期间未被改变,可以写入,如果不一致说明此数据被修改过,不能写入,否则会导致数据不一致的问题。
一般来说客户端从提交请求到得到服务器相应,需要传送两个tcp报文。
设想这样的一个场景,你要批量的执行一系列redis命令,例如执行100次get key,这时你要向redis请求100次+获取响应100次。如果能一次性将100个请求提交给redis server,执行完成之后批量的获取相应,只需要向redis请求1次,然后批量执行完命令,一次性结果,性能是不是会好很多呢?
答案是肯定的,节约的时间是客户端client和服务器redis server之间往返网络延迟的时间。这个时间可以用ping命令查看。
网络延迟高:批量执行,性能提升明显
网络延迟低(本机):批量执行,性能提升不明显
某些客户端(java和python)提供了一种叫做pipeline的编程模式用来解决批量提交请求的方式。
这里我们用python客户端来举例说明一下。
1、pipeline
网络延迟
client与server机器之间网络延迟如下,大约是30ms。

测试用例
分别执行其中的try_pipeline和without_pipeline统计处理时间。
# -*- coding:utf-8 -*- import redis
import time
from concurrent.futures import ProcessPoolExecutor r = redis.Redis(host='10.93.84.53', port=6379, password='bigdata123') def try_pipeline():
start = time.time()
with r.pipeline(transaction=False) as p:
p.sadd('seta', 1).sadd('seta', 2).srem('seta', 2).lpush('lista', 1).lrange('lista', 0, -1)
p.execute()
print time.time() - start def without_pipeline():
start = time.time()
r.sadd('seta', 1)
r.sadd('seta', 2)
r.srem('seta', 2)
r.lpush('lista', 1)
r.lrange('lista', 0, -1)
print time.time() - start def worker():
while True:
try_pipeline() with ProcessPoolExecutor(max_workers=12) as pool:
for _ in range(10):
pool.submit(worker)
结果分析
try_pipeline平均处理时间:0.04659
without_pipeline平均处理时间:0.16672
我们的批量里有5个操作,在处理时间维度上性能提升了4倍!
网络延迟大约是30ms,不使用批量的情况下,网络上的时间损耗就有0.15s(30ms*5)以上。而pipeline批量操作只进行一次网络往返,所以延迟只有0.03s。可以看到节省的时间基本都是网路延迟。
2、pipeline与transation(事务)
pipeline不仅仅用来批量的提交命令,还用来实现事务transation。
这里对redis事务的讨论不会太多,只是给出一个demo。详细的描述你可以参见这篇博客。redis事务
细心的你可能发现了,使用transaction与否不同之处在与创建pipeline实例的时候,transaction是否打开,默认是打开的。
# -*- coding:utf-8 -*- import redis
from redis import WatchError
from concurrent.futures import ProcessPoolExecutor r = redis.Redis(host='127.0.0.1', port=6379) # 减库存函数, 循环直到减库存完成
# 库存充足, 减库存成功, 返回True
# 库存不足, 减库存失败, 返回False
def decr_stock(): # python中redis事务是通过pipeline的封装实现的
with r.pipeline() as pipe:
while True:
try:
# watch库存键, multi后如果该key被其他客户端改变, 事务操作会抛出WatchError异常
pipe.watch('stock:count')
count = int(pipe.get('stock:count'))
if count > 0: # 有库存
# 事务开始
pipe.multi() # 这里起始位置???????????????
pipe.decr('stock:count')
# 把命令推送过去
# execute返回命令执行结果列表, 这里只有一个decr返回当前值
print pipe.execute()[0]
return True
else:
return False
except WatchError, ex:
# 打印WatchError异常, 观察被watch锁住的情况
print ex
pipe.unwatch() def worker():
while True:
# 没有库存就退出
if not decr_stock():
break # 实验开始
# 设置库存为100
r.set("stock:count", 100) # 多进程模拟多个客户端提交
with ProcessPoolExecutor(max_workers=2) as pool:
for _ in range(10):
pool.submit(worker)
Python Redis pipeline操作和Redis乐观锁保持数据一致性的更多相关文章
- redis的高级事务CAS(乐观锁)
Optimistic locking using check-and-set(乐观锁) 乐观锁介绍:watch指令在redis事物中提供了CAS的行为.为了检测被watch的keys在是否有多个cli ...
- Redis中的事务及乐观锁的实现
介绍 Redis中的事务(transaction)是一组命令的集合. 事务同命令一样都是Redis最小的执行单位,一个事务中的命令要么都执行,要么都不执行. Redis事务的实现需要用 ...
- Redis 事物、悲观、乐观锁 (详细)
1,概论 事物这东西相信大家都不陌生吧,在学习Spring,Mybatis等框架中, 只要是涉及到数据存储和修改的,都会有事物的存在, 废话就不多说了下面我们来简单的介绍下Redis事物以及锁. 2, ...
- Python Redis pipeline操作
Redis是建立在TCP协议基础上的CS架构,客户端client对redis server采取请求响应的方式交互. 一般来说客户端从提交请求到得到服务器相应,需要传送两个tcp报文. 设想这样的一个场 ...
- Python Redis pipeline操作(秒杀实现)
设想这样的一个场景,你要批量的执行一系列redis命令,例如执行100次get key,这时你要向redis请求100次+获取响应100次.如果能一次性将100个请求提交给redis server,执 ...
- ServiceStack.Redis常用操作 - 事务、并发锁_转
一.事务 使用IRedisClient执行事务示例: using (IRedisClient RClient = prcm.GetClient()) { RClient.Add("key&q ...
- ServiceStack.Redis常用操作 - 事务、并发锁
一.事务 使用IRedisClient执行事务示例: using (IRedisClient RClient = prcm.GetClient()) { RClient.Add("key&q ...
- 文成小盆友python-num11-(2) python操作Memcache Redis
本部分主要内容: python操作memcache python操作redis 一.python 操作 memcache memcache是一套分布式的高速缓存系统,由LiveJournal的Brad ...
- python通过连接池连接redis,操作redis队列
在每次使用redis都进行连接的话会拉低redis的效率,都知道redis是基于内存的数据库,效率贼高,所以每次进行连接比真正使用消耗的资源和时间还多.所以为了节省资源,减少多次连接损耗,连接池的作用 ...
随机推荐
- 【CAS单点登录视频教程】 第05集 -- CAS服务器安装
第一步: 下载cas 服务器 cas-server-3.5.2-release.zip 目录 ----------------------------------------- [CAS单点登录视频教 ...
- k8s oomkilled超出容器的内存限制
超出容器的内存限制 只要节点有足够的内存资源,那容器就可以使用超过其申请的内存,但是不允许容器使用超过其限制的 资源.如果容器分配了超过限制的内存,这个容器将会被优先结束.如果容器持续使用超过限制的内 ...
- ios中base64编码
参考文章:其中文章的:http://blog.csdn.net/ztp800201/article/details/9470065 下载包 其中 包括GTMBase包下载地址 http://pan.b ...
- 使用maven命令安装jar包到本地仓库
第三方jar包在开发工具中引入后编译没问题, 启动调试包括打包时会提示找不到jar包的错误.需要上传到maven仓库中,并在pom文件内引入. maven命令: 安装指定文件到本地仓库命令:mvn i ...
- PHP 5.3版本上MS SQL Server的连接配置
折腾了好久,最后终于连接成功了! 注:我使用的的phpStudy. php.ini中配置: ;这是php中带的驱动 extension=php_sqlsrv.dll extension=php_pdo ...
- iOS 开发 Pch 文件的正确使用
在Xcode6之前,创建一个新工程xcode会在Supporting files文件夹下面自动创建一个“工程名-Prefix.pch”文件,也是一个头文件,pch头文件的内容能被项目中的其他所有源文件 ...
- 数据结构学习之stack
不能小看这些基本的数据结构,写了才发现还是会有问题出现的. 有码有真相: #pragma once class MyStack { public: MyStack(void); ~MyStack(vo ...
- nginx 中文和英文资料
http://www.nginx.cn/doc/ http://manual.51yip.com/nginx/ http://tool.oschina.net/apidocs/apidoc?api=n ...
- ubuntu 51单片机环境搭建方法
首先下载个sdcc 1: sudo apt-get install sdcc 2: sudo apt-get install libvte-dev3: 安装 gSTC-ISP 下载地址:http:// ...
- JDBC连接SQLServer出现的异常
数据库连接. question1. java.lang.ClassNotFoundException: com.microsoft.sqlserver.jdbc.SQLServerDriver 异常 ...