Robot Motion
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 10708   Accepted: 5192

Description


A robot has been programmed to follow the instructions in its path. Instructions for the next direction the robot is to move are laid down in a grid. The possible instructions are

N north (up the page) 
S south (down the page) 
E east (to the right on the page) 
W west (to the left on the page)

For example, suppose the robot starts on the north (top) side of Grid 1 and starts south (down). The path the robot follows is shown. The robot goes through 10 instructions in the grid before leaving the grid.

Compare what happens in Grid 2: the robot goes through 3 instructions only once, and then starts a loop through 8 instructions, and never exits.

You are to write a program that determines how long it takes a robot to get out of the grid or how the robot loops around.

Input

There will be one or more grids for robots to navigate. The data for each is in the following form. On the first line are three integers separated by blanks: the number of rows in the grid, the number of columns in the grid, and the number of the column in which the robot enters from the north. The possible entry columns are numbered starting with one at the left. Then come the rows of the direction instructions. Each grid will have at least one and at most 10 rows and columns of instructions. The lines of instructions contain only the characters N, S, E, or W with no blanks. The end of input is indicated by a row containing 0 0 0.

Output

For each grid in the input there is one line of output. Either the robot follows a certain number of instructions and exits the grid on any one the four sides or else the robot follows the instructions on a certain number of locations once, and then the instructions on some number of locations repeatedly. The sample input below corresponds to the two grids above and illustrates the two forms of output. The word "step" is always immediately followed by "(s)" whether or not the number before it is 1.

Sample Input

3 6 5
NEESWE
WWWESS
SNWWWW
4 5 1
SESWE
EESNW
NWEEN
EWSEN
0 0 0

Sample Output

10 step(s) to exit
3 step(s) before a loop of 8 step(s)
题意:一个迷宫,机器人从某行最上方进入,跟随每一步到达的迷宫的指示行动,问机器人是否能到达迷宫外(任意一边都可以出),或者会在何时进入圈
应用时:15min
实际用时:51min
原因:读题,x,y用反
#define ONLINE_JUDGE
#include<cstdio>
#include <cstring>
#include <algorithm>
using namespace std; int A,B,sx,sy;
char maz[101][101];
int vis[101][101];
const int dx[4]={0,1,0,-1};
const int dy[4]={-1,0,1,0}; int dir(char ch){
if(ch=='N')return 0;
else if(ch=='E')return 1;
else if(ch=='S')return 2;
return 3;
}
void solve(){
memset(vis,0,sizeof(vis));
sx--;sy=0;
int step=0;
int fx,fy;
while(!vis[sy][sx]&&sx>=0&&sx<A&&sy>=0&&sy<B&&++step){
fx=sx;fy=sy;
vis[sy][sx]=step;
sx=dx[dir(maz[fy][fx])]+fx;
sy=dy[dir(maz[fy][fx])]+fy;
}
if(sx<0||sy<0||sx>=A||sy>=B)printf("%d step(s) to exit\n",step);
else {
printf("%d step(s) before a loop of %d step(s)\n",vis[sy][sx]-1,step+1-vis[sy][sx]);
}
}
int main(){
#ifndef ONLINE_JUDGE
freopen("output.txt","w",stdout);
#endif // ONLINE_JUDGE
while(scanf("%d%d%d",&B,&A,&sx)==3&&A&&B){ for(int i=0;i<B;i++)scanf("%s",maz[i]);
solve();
}
return 0;
}

  

快速切题 poj1573的更多相关文章

  1. 快速切题sgu127. Telephone directory

    127. Telephone directory time limit per test: 0.25 sec. memory limit per test: 4096 KB CIA has decid ...

  2. 快速切题sgu126. Boxes

    126. Boxes time limit per test: 0.25 sec. memory limit per test: 4096 KB There are two boxes. There ...

  3. 快速切题 sgu123. The sum

    123. The sum time limit per test: 0.25 sec. memory limit per test: 4096 KB The Fibonacci sequence of ...

  4. 快速切题 sgu120. Archipelago 计算几何

    120. Archipelago time limit per test: 0.25 sec. memory limit per test: 4096 KB Archipelago Ber-Islan ...

  5. 快速切题 sgu119. Magic Pairs

    119. Magic Pairs time limit per test: 0.5 sec. memory limit per test: 4096 KB “Prove that for any in ...

  6. 快速切题 sgu118. Digital Root 秦九韶公式

    118. Digital Root time limit per test: 0.25 sec. memory limit per test: 4096 KB Let f(n) be a sum of ...

  7. 快速切题 sgu117. Counting 分解质因数

    117. Counting time limit per test: 0.25 sec. memory limit per test: 4096 KB Find amount of numbers f ...

  8. 快速切题 sgu116. Index of super-prime bfs+树思想

    116. Index of super-prime time limit per test: 0.25 sec. memory limit per test: 4096 KB Let P1, P2, ...

  9. 快速切题 sgu115. Calendar 模拟 难度:0

    115. Calendar time limit per test: 0.25 sec. memory limit per test: 4096 KB First year of new millen ...

随机推荐

  1. 在服务中用管理员权限创建一个可弹出UI的进程 (转载)

    转载:http://blog.csdn.net/woshinia/article/details/7850295 转载:http://blog.csdn.net/hurryboylqs/article ...

  2. 在Visual C#中使用XML指南之读取XML

    网站:http://www.yesky.com/155/1915155all.shtml#p1915155  

  3. datagridview控件的使用

    http://home.cnblogs.com/group/topic/40730.html datagridview定位到最后一行的方法 this.dataGridView2.CurrentCell ...

  4. 第七章 对称加密算法--DES

    注意:本节内容主要参考自<Java加密与解密的艺术(第2版)>第7章“初等加密算法--对称加密算法” 7.1.对称加密算法 特点: 加密与解密使用同一个密钥 是使用最广的算法 常见对称加密 ...

  5. BZOJ2819: Nim 树链剖分

    Description 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取.谁不能取谁输.这个游 ...

  6. 马尔科夫随机场模型(MRF-Markov Random Field)

    原文: http://blog.sina.com.cn/s/blog_92c398b00102vs3q.html 马尔科夫过程​ 隐马尔科夫过程​​ 与马尔科夫相比,隐马尔可夫模型则是双重随机过程,不 ...

  7. 【Coursera】SecondWeek(2)

    The First Two Packets on the Internet Leonard Kleinrock Kleinrock 是一名工程师和计算机科学家,他在APRANET网络中起到了至关重要的 ...

  8. 01_Spark基础

    1.1.Spark Ecosystem BlinkDB: 允许用户定义一个错误范围,BlinkDB将在用户给定的错误范围内,尽可能快的提供查询结果 1.2.Spark愿景 1.3.Spark简介 1) ...

  9. nginx configuration

    Now that you know how to manage the service itself, you should take a few minutes to familiarize you ...

  10. 使用innerHTML时要注意的一点

    为某个元素添加内容时,使用的是document.getElementsByClassName,由于只有一个元素拥有这样的ClassName,就直接这样用,document.getElementsByC ...