Python实现KNN算法及手写程序识别
1.Python实现KNN算法
输入:inX:与现有数据集(1xN)进行比较的向量
dataSet:已知向量的大小m数据集(NxM)
个标签:数据集标签(1xM矢量)
k:用于比较的邻居数(应为奇数)
输出:最受欢迎的类标签(归类问题)
# -*- coding: utf-8 -*-
"""
Created on Sun Apr 16 23:01:54 2017 @author: SimonsZhao
""" kNN: k Nearest Neighbors
Input: inX: vector to compare to existing dataset (1xN)
dataSet: size m data set of known vectors (NxM)
labels: data set labels (1xM vector)
k: number of neighbors to use for comparison (should be an odd number)
Output: the most popular class label '''
from numpy import *
import operator
from os import listdir def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] def createDataSet():
group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group, labels def file2matrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines()) #get the number of lines in the file
returnMat = zeros((numberOfLines,3)) #prepare matrix to return
classLabelVector = [] #prepare labels return
fr = open(filename)
index = 0
for line in fr.readlines():
line = line.strip()
listFromLine = line.split('\t')
returnMat[index,:] = listFromLine[0:3]
classLabelVector.append(int(listFromLine[-1]))
index += 1
return returnMat,classLabelVector def autoNorm(dataSet):
minVals = dataSet.min(0)
maxVals = dataSet.max(0)
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0]
normDataSet = dataSet - tile(minVals, (m,1))
normDataSet = normDataSet/tile(ranges, (m,1)) #element wise divide
return normDataSet, ranges, minVals def datingClassTest():
hoRatio = 0.50 #hold out 10%
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #load data setfrom file
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs):
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
if (classifierResult != datingLabels[i]): errorCount += 1.0
print "the total error rate is: %f" % (errorCount/float(numTestVecs))
print errorCount def img2vector(filename):
returnVect = zeros((1,1024))
fr = open(filename)
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j])
return returnVect def handwritingClassTest():
hwLabels = []
trainingFileList = listdir('trainingDigits') #load the training set
m = len(trainingFileList)
trainingMat = zeros((m,1024))
for i in range(m):
fileNameStr = trainingFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:] = img2vector('trainingDigits/%s' % fileNameStr)
testFileList = listdir('testDigits') #iterate through the test set
errorCount = 0.0
mTest = len(testFileList)
for i in range(mTest):
fileNameStr = testFileList[i]
fileStr = fileNameStr.split('.')[0] #take off .txt
classNumStr = int(fileStr.split('_')[0])
vectorUnderTest = img2vector('testDigits/%s' % fileNameStr)
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3)
print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, classNumStr)
if (classifierResult != classNumStr): errorCount += 1.0
print "\nthe total number of errors is: %d" % errorCount
print "\nthe total error rate is: %f" % (errorCount/float(mTest))
2.数据集(测试集合训练集)
3.KNN测试结果
Python实现KNN算法及手写程序识别的更多相关文章
- 基于OpenCV的KNN算法实现手写数字识别
基于OpenCV的KNN算法实现手写数字识别 一.数据预处理 # 导入所需模块 import cv2 import numpy as np import matplotlib.pyplot as pl ...
- KNN算法案例--手写数字识别
import numpy as np import matplotlib .pyplot as plt import pandas as pd from sklearn.neighbors impor ...
- [Python]基于CNN的MNIST手写数字识别
目录 一.背景介绍 1.1 卷积神经网络 1.2 深度学习框架 1.3 MNIST 数据集 二.方法和原理 2.1 部署网络模型 (1)权重初始化 (2)卷积和池化 (3)搭建卷积层1 (4)搭建卷积 ...
- C#中调用Matlab人工神经网络算法实现手写数字识别
手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化 投影 矩阵 目标定位 Matlab 手写数字图像识别简介: 手写 ...
- 使用AI算法进行手写数字识别
人工智能 人工智能(Artificial Intelligence,简称AI)一词最初是在1956年Dartmouth学会上提出的,从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展 ...
- KNN分类算法实现手写数字识别
需求: 利用一个手写数字“先验数据”集,使用knn算法来实现对手写数字的自动识别: 先验数据(训练数据)集: ♦数据维度比较大,样本数比较多. ♦ 数据集包括数字0-9的手写体. ♦每个数字大约有20 ...
- 实验楼 1. k-近邻算法实现手写数字识别系统--《机器学习实战 》
首先看看一些关键词:K-NN算法,训练集,测试集,特征(空间),标签 举实验楼中的样例,通俗的讲讲K-NN算法:电影有两个分类(标签)-动作片-爱情片.两个特征--打斗场面--亲吻画面. 将那些数字和 ...
- KNN算法实现手写数字
from numpy import * import operator from os import listdir def classify0(inX, dataSet, labels, k): d ...
- CNN:人工智能之神经网络算法进阶优化,六种不同优化算法实现手写数字识别逐步提高,应用案例自动驾驶之捕捉并识别周围车牌号—Jason niu
import mnist_loader from network3 import Network from network3 import ConvPoolLayer, FullyConnectedL ...
随机推荐
- Servlet入门总结及第一个Servlet程序
目录 一了解Servlet的概念 二Servlet技术功能 三 Servlet技术特点 四 Servlet生命周期 五servlet工作过程 六 Servlet与JSP区别 七Servlet代码结构 ...
- DropDownListFor的种种纠结(禁止转载)
严重禁止转载,好多爬虫软件为了浏览到处抓东西,真缺德 具有键“CorpType”的 ViewData 项属于类型“System.Int64”,但它必须属于类型“IEnumerable<Selec ...
- swift--使用URLSession异步加载图片
NSURLConnection,在ios9.0以后被废弃,以后使用URLSession类,如下图 具体样例: self.imageV.frame = CGRect(x:,y:,width:kScree ...
- 服务端测试之接口测试工具——postman
今天跟大家分享一个非常常见大家也非常熟悉的测试工具——postman. 1.安装postman postman是一款功能强大的网页调试与发送网页HTTP请求的Chrome插件.打开chrome浏览器, ...
- 使用CountDownLatch模拟高并发场景
import java.util.concurrent.CountDownLatch; import java.util.concurrent.ExecutorService; import java ...
- Apache ActiveMQ Fileserver远程代码执行漏洞
扫端口的时候遇到8161端口,输入admin/admin,成功登陆,之前就看到过相关文章,PUT了一句话上去,但是没有什么效果,于是本地搭建了一个环境,记录一下测试过程. 环境搭建: ActiveMQ ...
- php curl那点事儿
curl是最常用功能之一初始化句柄 $ch = curl_init(); post 传$data 1. 如果$data是字符串,则Content-Type是application/x-www-form ...
- WP8.1学习系列(第二十章)——添加控件和处理事件
先决条件 添加控件 设置控件的名称 设置控件属性 创建事件处理程序 新控件 总结 相关主题 通过使用如按钮.文本框和组合框等控件,你可以创建应用的 UI. 下面将显示如何将控件添加到应用.处理控件时, ...
- java基础---->Runtime类的使用(一)
这里面我们对java中的Runtime类做一个简单的了解介绍.若不常想到无常和死,虽有绝顶的聪明,照理说也和呆子一样. Runtimeo类的使用 一.得到系统内存的一些信息 @Test public ...
- LeetCode - 637. Average of Levels in Binary Tree
Given a non-empty binary tree, return the average value of the nodes on each level in the form of an ...