题目链接:http://poj.org/problem?id=1986

Description

Farmer John's cows refused to run in his marathon since he chose a path much too long for their leisurely lifestyle. He therefore wants to find a path of a more reasonable length. The input to this problem consists of the same input as in "Navigation Nightmare",followed by a line containing a single integer K, followed by K "distance queries". Each distance query is a line of input containing two integers, giving the numbers of two farms between which FJ is interested in computing distance (measured in the length of the roads along the path between the two farms). Please answer FJ's distance queries as quickly as possible! 

Input

* Lines 1..1+M: Same format as "Navigation Nightmare"

* Line 2+M: A single integer, K. 1 <= K <= 10,000

* Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms.

Output

* Lines 1..K: For each distance query, output on a single line an integer giving the appropriate distance. 

Sample Input

7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6
1 4
2 6

Sample Output

13
3
36

Hint

Farms 2 and 6 are 20+3+13=36 apart. 

题意:

输入第1~M+1行,与POJ 1984相同,代表了农场地图。

然后再一行有一个整数K代表询问数,

再然后有K个询问u和v之间最短距离。

题解:

本题的输入确定了农场地图是一棵树,并且本题不需要知道农场之间的位置关系,所以不需要记录东西南北。

树上两点间的最短距离,有两种情况:

①u是v的祖先,则dist(u,v) = dist(root,v) - dist(root,u)

②u不是v的祖先,那么从u到v必然要经过LCA(u,v),显然就是最短路径,则dist(u,v) = dist(root,u) - dist(root,LCA(u,v)) + dist(root,v) - dist(root,LCA(u,v))

不难发现,第①种情况下,dist(root,LCA(u,v)) = dist(root,u),那么①和②就可以统一为:dist(u,v) = dist(root,u) + dist(root,v) - 2 * dist(root,LCA(u,v))

所以我们只要计算出每个节点和树根的距离,求出所有查询(u,v)的LCA(u,v),就能得到dist(u,v)。

AC代码:

#include<cstdio>
#include<vector>
using namespace std; const int maxn=+; //节点数
const int maxm=+; //边数
const int maxq=+; //查询数 int par[maxn];
int find(int x){return (par[x]==x)?x:(par[x]=find(par[x]));} struct Edge{
int u,v,w;
Edge(int u=,int v=,int w=){this->u=u,this->v=v,this->w=w;}
};
vector<Edge> E;
vector<int> Ge[maxn];
void addedge(int u,int v,int w)
{
E.push_back(Edge(u,v,w));
Ge[u].push_back(E.size()-);
} struct Query{
int u,v;
int lca;
Query(int u=,int v=,int lca=){this->u=u,this->v=v,this->lca=lca;}
};
vector<Query> Q;
vector<int> Gq[maxn];
void addquery(int u,int v)
{
Q.push_back(Query(u,v));
Gq[u].push_back(Q.size()-);
} bool vis[maxn];
int dist[maxn];
void LCA(int u,int d)
{
par[u]=u; //建立以u为代表元素的集合
vis[u]=;
dist[u]=d;
for(int i=;i<Ge[u].size();i++)
{
Edge &e=E[Ge[u][i]]; int v=e.v;
if(!vis[v])
{
LCA(v,d+e.w);
par[v]=u; //将v的集合并入u的集合
}
}
for(int i=;i<Gq[u].size();i++)
{
Query &q=Q[Gq[u][i]]; int v=q.v;
if(vis[v])
{
q.lca=find(v);
Q[Gq[u][i]^].lca=q.lca;
}
}
} int m,n,k;
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int u,v,w; char d[];
scanf("%d%d%d%s",&u,&v,&w,d);
addedge(u,v,w);
addedge(v,u,w);
} scanf("%d",&k);
for(int i=;i<=k;i++)
{
int u,v;
scanf("%d%d",&u,&v);
addquery(u,v);
addquery(v,u);
} LCA(,); for(int i=;i<=k;i++)
{
printf("%d\n",dist[Q[(i-)*].u]+dist[Q[(i-)*].v]-*dist[Q[(i-)*].lca]);
}
}

POJ 1986 - Distance Queries - [LCA模板题][Tarjan-LCA算法]的更多相关文章

  1. POJ.1986 Distance Queries ( LCA 倍增 )

    POJ.1986 Distance Queries ( LCA 倍增 ) 题意分析 给出一个N个点,M条边的信息(u,v,w),表示树上u-v有一条边,边权为w,接下来有k个询问,每个询问为(a,b) ...

  2. POJ 1986 Distance Queries LCA两点距离树

    标题来源:POJ 1986 Distance Queries 意甲冠军:给你一棵树 q第二次查询 每次你问两个点之间的距离 思路:对于2点 u v dis(u,v) = dis(root,u) + d ...

  3. POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 【USACO】距离咨询(最近公共祖先)

    POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 [USACO]距离咨询(最近公共祖先) Description F ...

  4. POJ 1986 Distance Queries 【输入YY && LCA(Tarjan离线)】

    任意门:http://poj.org/problem?id=1986 Distance Queries Time Limit: 2000MS   Memory Limit: 30000K Total ...

  5. POJ 1986 Distance Queries(LCA Tarjan法)

    Distance Queries [题目链接]Distance Queries [题目类型]LCA Tarjan法 &题意: 输入n和m,表示n个点m条边,下面m行是边的信息,两端点和权,后面 ...

  6. POJ 1470 Closest Common Ancestors (模板题)(Tarjan离线)【LCA】

    <题目链接> 题目大意:给你一棵树,然后进行q次询问,然后要你统计这q次询问中指定的两个节点最近公共祖先出现的次数. 解题分析:LCA模板题,下面用的是离线Tarjan来解决.并且为了代码 ...

  7. POJ 1330 Nearest Common Ancestors (模板题)【LCA】

    <题目链接> 题目大意: 给出一棵树,问任意两个点的最近公共祖先的编号. 解题分析:LCA模板题,下面用的是树上倍增求解. #include <iostream> #inclu ...

  8. POJ 1986 Distance Queries(Tarjan离线法求LCA)

    Distance Queries Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 12846   Accepted: 4552 ...

  9. poj 1986 Distance Queries 带权lca 模版题

    Distance Queries   Description Farmer John's cows refused to run in his marathon since he chose a pa ...

随机推荐

  1. 正则 /\D/g

    onKeyUp="this.value=this.value.replace(/\D/g,'');"红色的是什么意识 /g是什么意思 ----------------------- ...

  2. 【Windows socket+IP+UDP+TCP】网络基础

    Windows Socket+网络      Winsock是 Windows下套接字标准.          Winsock 编程分为UDP[Windows socket + UDP],TCP[Wi ...

  3. SpringMVC由浅入深day01_3非注解的处理器映射器和适配器

     3 非注解的处理器映射器和适配器 3.1 非注解的处理器映射器 3.1.1 HandlerMapping处理器映射器 HandlerMapping 负责根据request请求找到对应的Handler ...

  4. .NET Framework 4.0源代码

    原文出处:http://blogs.microsoft.co.il/blogs/arik/archive/2010/07/12/step-into-net-framework-4-0-source-c ...

  5. 判断资源贴图是否有alpha

    /* modfly selected textures`s maxSize and ImportFormat bool hasAlpha = true; if(hasAlpha)then(textur ...

  6. mac 卸载idea

    卸载MAC中的IDEA Intellij 首先在应用里面右键移动到垃圾桶 然后使用命令行: cd Users/xxx/Library/ 上面的xxx对应你的用户名,然后输入 rm -rf Logs/I ...

  7. mybatis 之 parameterType="Map"

    // 获得品牌下的商品 Map<String, Object> params = new HashMap<String, Object>(); params.put(" ...

  8. linux系统如何操作隐藏文件

    在linux下,以点"."开头命名的文件在系统中被视为隐藏文件.因此,如果想隐藏某个文件或目录,一种简单的办法就是把文件名命名为点开头. 对于目录backcron,可以这样操作隐藏 ...

  9. .NET批量数据入库

    /// <summary> /// 批量写入数据库 /// </summary> /// <param name="urlInfo">Url类& ...

  10. 《C++ Primer Plus》第17章 输入、输出和文件 学习笔记

    流是进出程序的字节流.缓冲区是内存中的临时存储区域,是程序与文件或其他I/O设备之间的桥梁.信息在缓冲区和文件之间传输时,将使用设备(如磁盘驱动器)处理效率最高的尺寸以大块数据的方式进行传输.信息在缓 ...