POJ 1986 - Distance Queries - [LCA模板题][Tarjan-LCA算法]
题目链接:http://poj.org/problem?id=1986
Description
Input
* Line 2+M: A single integer, K. 1 <= K <= 10,000
* Lines 3+M..2+M+K: Each line corresponds to a distance query and contains the indices of two farms.
Output
Sample Input
7 6
1 6 13 E
6 3 9 E
3 5 7 S
4 1 3 N
2 4 20 W
4 7 2 S
3
1 6
1 4
2 6
Sample Output
13
3
36
Hint
题意:
输入第1~M+1行,与POJ 1984相同,代表了农场地图。
然后再一行有一个整数K代表询问数,
再然后有K个询问u和v之间最短距离。
题解:
本题的输入确定了农场地图是一棵树,并且本题不需要知道农场之间的位置关系,所以不需要记录东西南北。
树上两点间的最短距离,有两种情况:
①u是v的祖先,则dist(u,v) = dist(root,v) - dist(root,u)
②u不是v的祖先,那么从u到v必然要经过LCA(u,v),显然就是最短路径,则dist(u,v) = dist(root,u) - dist(root,LCA(u,v)) + dist(root,v) - dist(root,LCA(u,v))
不难发现,第①种情况下,dist(root,LCA(u,v)) = dist(root,u),那么①和②就可以统一为:dist(u,v) = dist(root,u) + dist(root,v) - 2 * dist(root,LCA(u,v))
所以我们只要计算出每个节点和树根的距离,求出所有查询(u,v)的LCA(u,v),就能得到dist(u,v)。
AC代码:
#include<cstdio>
#include<vector>
using namespace std; const int maxn=+; //节点数
const int maxm=+; //边数
const int maxq=+; //查询数 int par[maxn];
int find(int x){return (par[x]==x)?x:(par[x]=find(par[x]));} struct Edge{
int u,v,w;
Edge(int u=,int v=,int w=){this->u=u,this->v=v,this->w=w;}
};
vector<Edge> E;
vector<int> Ge[maxn];
void addedge(int u,int v,int w)
{
E.push_back(Edge(u,v,w));
Ge[u].push_back(E.size()-);
} struct Query{
int u,v;
int lca;
Query(int u=,int v=,int lca=){this->u=u,this->v=v,this->lca=lca;}
};
vector<Query> Q;
vector<int> Gq[maxn];
void addquery(int u,int v)
{
Q.push_back(Query(u,v));
Gq[u].push_back(Q.size()-);
} bool vis[maxn];
int dist[maxn];
void LCA(int u,int d)
{
par[u]=u; //建立以u为代表元素的集合
vis[u]=;
dist[u]=d;
for(int i=;i<Ge[u].size();i++)
{
Edge &e=E[Ge[u][i]]; int v=e.v;
if(!vis[v])
{
LCA(v,d+e.w);
par[v]=u; //将v的集合并入u的集合
}
}
for(int i=;i<Gq[u].size();i++)
{
Query &q=Q[Gq[u][i]]; int v=q.v;
if(vis[v])
{
q.lca=find(v);
Q[Gq[u][i]^].lca=q.lca;
}
}
} int m,n,k;
int main()
{
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++)
{
int u,v,w; char d[];
scanf("%d%d%d%s",&u,&v,&w,d);
addedge(u,v,w);
addedge(v,u,w);
} scanf("%d",&k);
for(int i=;i<=k;i++)
{
int u,v;
scanf("%d%d",&u,&v);
addquery(u,v);
addquery(v,u);
} LCA(,); for(int i=;i<=k;i++)
{
printf("%d\n",dist[Q[(i-)*].u]+dist[Q[(i-)*].v]-*dist[Q[(i-)*].lca]);
}
}
POJ 1986 - Distance Queries - [LCA模板题][Tarjan-LCA算法]的更多相关文章
- POJ.1986 Distance Queries ( LCA 倍增 )
POJ.1986 Distance Queries ( LCA 倍增 ) 题意分析 给出一个N个点,M条边的信息(u,v,w),表示树上u-v有一条边,边权为w,接下来有k个询问,每个询问为(a,b) ...
- POJ 1986 Distance Queries LCA两点距离树
标题来源:POJ 1986 Distance Queries 意甲冠军:给你一棵树 q第二次查询 每次你问两个点之间的距离 思路:对于2点 u v dis(u,v) = dis(root,u) + d ...
- POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 【USACO】距离咨询(最近公共祖先)
POJ 1986 Distance Queries / UESTC 256 Distance Queries / CJOJ 1129 [USACO]距离咨询(最近公共祖先) Description F ...
- POJ 1986 Distance Queries 【输入YY && LCA(Tarjan离线)】
任意门:http://poj.org/problem?id=1986 Distance Queries Time Limit: 2000MS Memory Limit: 30000K Total ...
- POJ 1986 Distance Queries(LCA Tarjan法)
Distance Queries [题目链接]Distance Queries [题目类型]LCA Tarjan法 &题意: 输入n和m,表示n个点m条边,下面m行是边的信息,两端点和权,后面 ...
- POJ 1470 Closest Common Ancestors (模板题)(Tarjan离线)【LCA】
<题目链接> 题目大意:给你一棵树,然后进行q次询问,然后要你统计这q次询问中指定的两个节点最近公共祖先出现的次数. 解题分析:LCA模板题,下面用的是离线Tarjan来解决.并且为了代码 ...
- POJ 1330 Nearest Common Ancestors (模板题)【LCA】
<题目链接> 题目大意: 给出一棵树,问任意两个点的最近公共祖先的编号. 解题分析:LCA模板题,下面用的是树上倍增求解. #include <iostream> #inclu ...
- POJ 1986 Distance Queries(Tarjan离线法求LCA)
Distance Queries Time Limit: 2000MS Memory Limit: 30000K Total Submissions: 12846 Accepted: 4552 ...
- poj 1986 Distance Queries 带权lca 模版题
Distance Queries Description Farmer John's cows refused to run in his marathon since he chose a pa ...
随机推荐
- 正则 /\D/g
onKeyUp="this.value=this.value.replace(/\D/g,'');"红色的是什么意识 /g是什么意思 ----------------------- ...
- 【Windows socket+IP+UDP+TCP】网络基础
Windows Socket+网络 Winsock是 Windows下套接字标准. Winsock 编程分为UDP[Windows socket + UDP],TCP[Wi ...
- SpringMVC由浅入深day01_3非注解的处理器映射器和适配器
3 非注解的处理器映射器和适配器 3.1 非注解的处理器映射器 3.1.1 HandlerMapping处理器映射器 HandlerMapping 负责根据request请求找到对应的Handler ...
- .NET Framework 4.0源代码
原文出处:http://blogs.microsoft.co.il/blogs/arik/archive/2010/07/12/step-into-net-framework-4-0-source-c ...
- 判断资源贴图是否有alpha
/* modfly selected textures`s maxSize and ImportFormat bool hasAlpha = true; if(hasAlpha)then(textur ...
- mac 卸载idea
卸载MAC中的IDEA Intellij 首先在应用里面右键移动到垃圾桶 然后使用命令行: cd Users/xxx/Library/ 上面的xxx对应你的用户名,然后输入 rm -rf Logs/I ...
- mybatis 之 parameterType="Map"
// 获得品牌下的商品 Map<String, Object> params = new HashMap<String, Object>(); params.put(" ...
- linux系统如何操作隐藏文件
在linux下,以点"."开头命名的文件在系统中被视为隐藏文件.因此,如果想隐藏某个文件或目录,一种简单的办法就是把文件名命名为点开头. 对于目录backcron,可以这样操作隐藏 ...
- .NET批量数据入库
/// <summary> /// 批量写入数据库 /// </summary> /// <param name="urlInfo">Url类& ...
- 《C++ Primer Plus》第17章 输入、输出和文件 学习笔记
流是进出程序的字节流.缓冲区是内存中的临时存储区域,是程序与文件或其他I/O设备之间的桥梁.信息在缓冲区和文件之间传输时,将使用设备(如磁盘驱动器)处理效率最高的尺寸以大块数据的方式进行传输.信息在缓 ...