http://blog.csdn.net/lxg0807/article/details/52960072

环境说明:python2.7、linux 
自己打自己脸,目前官方的包只能在linux,mac环境下使用。误导大家了,对不起。 
测试facebook开源的基于深度学习的对文本分类的fastText模型 
fasttext python包的安装:

pip install fasttext
  • 1

第一步获取分类文本,文本直接用的清华大学的新闻分本,可在文本系列的第三篇找到下载地址。 
输出数据格式: 样本 + 样本标签 
说明:这一步不是必须的,可以直接从第二步开始,第二步提供了处理好的文本格式。写这一步主要是为了记忆当时是怎么处理原始文本的。

import jieba
import os basedir = "/home/li/corpus/news/" #这是我的文件地址,需跟据文件夹位置进行更改
dir_list = ['affairs','constellation','economic','edu','ent','fashion','game','home','house','lottery','science','sports','stock']
##生成fastext的训练和测试数据集 ftrain = open("news_fasttext_train.txt","w")
ftest = open("news_fasttext_test.txt","w") num = -1
for e in dir_list:
num += 1
indir = basedir + e + '/'
files = os.listdir(indir)
count = 0
for fileName in files:
count += 1
filepath = indir + fileName
with open(filepath,'r') as fr:
text = fr.read()
text = text.decode("utf-8").encode("utf-8")
seg_text = jieba.cut(text.replace("\t"," ").replace("\n"," "))
outline = " ".join(seg_text)
outline = outline.encode("utf-8") + "\t__label__" + e + "\n"
# print outline
# break if count < 10000:
ftrain.write(outline)
ftrain.flush()
continue
elif count < 20000:
ftest.write(outline)
ftest.flush()
continue
else:
break ftrain.close()
ftest.close()
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41

第二步:利用fasttext进行分类。使用的是fasttext的python包。 
整理好的数据:百度网盘下载 
news_fasttext_train.txt 
news_fasttext_test.txt

# _*_coding:utf-8 _*_
import logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import fasttext
#训练模型
classifier = fasttext.supervised("news_fasttext_train.txt","news_fasttext.model",label_prefix="__label__") #load训练好的模型
#classifier = fasttext.load_model('news_fasttext.model.bin', label_prefix='__label__')
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
#测试模型
result = classifier.test("news_fasttext_test.txt")
print result.precision
print result.recall
  • 1
  • 2
  • 3
  • 4
  • 5
0.92240420242
0.92240420242
  • 1
  • 2
  • 3

由于fasttext貌似只提供全部结果的p值和r值,想要统计不同分类的结果,就需要自己写代码来实现了。

# -*- coding: utf-8 -*-
"""
Created on Wed Oct 18 14:17:27 2017 @author: xiaoguangli
"""
import logging
logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
import fasttext classifier = fasttext.load_model('news_fasttext.model.bin', label_prefix='__label__')
labels_right = []
texts = []
with open("news_fasttext_test.txt") as fr:
for line in fr:
line = line.decode("utf-8").rstrip()
labels_right.append(line.split("\t")[1].replace("__label__",""))
texts.append(line.split("\t")[0])
# print labels
# print texts
# break
labels_predict = [e[0] for e in classifier.predict(texts)] #预测输出结果为二维形式
# print labels_predict text_labels = list(set(labels_right))
text_predict_labels = list(set(labels_predict))
print text_predict_labels
print text_labels A = dict.fromkeys(text_labels,0) #预测正确的各个类的数目
B = dict.fromkeys(text_labels,0) #测试数据集中各个类的数目
C = dict.fromkeys(text_predict_labels,0) #预测结果中各个类的数目
for i in range(0,len(labels_right)):
B[labels_right[i]] += 1
C[labels_predict[i]] += 1
if labels_right[i] == labels_predict[i]:
A[labels_right[i]] += 1 print A
print B
print C
#计算准确率,召回率,F值
for key in B:
try:
r = float(A[key]) / float(B[key])
p = float(A[key]) / float(C[key])
f = p * r * 2 / (p + r)
print "%s:\t p:%f\t r:%f\t f:%f" % (key,p,r,f)
except:
print "error:", key, "right:", A.get(key,0), "real:", B.get(key,0), "predict:",C.get(key,0)
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54

实验数据分类

[u'affairs', u'fashion', u'lottery', u'house', u'science', u'sports', u'game', u'economic', u'ent', u'edu', u'home', u'constellation', u'stock']
['affairs', 'fashion', 'house', 'sports', 'game', 'economic', 'ent', 'edu', 'home', 'stock', 'science']
{'science': 8415, 'affairs': 8257, 'fashion': 3173, 'house': 9491, 'sports': 9739, 'game': 9506, 'economic': 9235, 'ent': 9665, 'edu': 9491, 'home': 9315, 'stock': 9015}
{'science': 10000, 'affairs': 10000, 'fashion': 3369, 'house': 10000, 'sports': 10000, 'game': 10000, 'economic': 10000, 'ent': 10000, 'edu': 10000, 'home': 10000, 'stock': 10000}
{u'affairs': 8562, u'fashion': 3585, u'lottery': 96, u'science': 9088, u'edu': 10068, u'sports': 10099, u'game': 10151, u'economic': 10131, u'ent': 10798, u'house': 10000, u'home': 10103, u'constellation': 432, u'stock': 10256}
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6

#实验结果

science:    p:0.841500  r:0.925946r:    f:0.881706
affairs: p:0.825700 r:0.964377r: f:0.889667
fashion: p:0.941822 r:0.885077r: f:0.912568
house: p:0.949100 r:0.949100r: f:0.949100
sports: p:0.973900 r:0.964353r: f:0.969103
game: p:0.950600 r:0.936459r: f:0.943477
economic: p:0.923500 r:0.911559r: f:0.917490
ent: p:0.966500 r:0.895073r: f:0.929416
edu: p:0.949100 r:0.942690r: f:0.945884
home: p:0.931500 r:0.922003r: f:0.926727
stock: p:0.901500 r:0.878998r: f:0.890107
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11

从结果上,看出fasttext的分类效果还是不错的,没有进行对fasttext的调参,结果都基本在90以上,不过在预测的时候,不知道怎么多出了一个分类constellation。难道。。。。查找原因中。。。。 
2016/11/7更正:从集合B中可以看出训练集的标签中是没有lottery和constellation的数据的,说明在数据准备的时候,每类选取10000篇,导致在测试数据集中lottery和constellation不存在数据了。因此在第一步准备数据的时候可以根据lottery和constellation类的数据进行训练集和测试集的大小划分,或者简单粗暴点,这两类没有达到我们的数量要求,可以直接删除掉

文本分类(六):使用fastText对文本进行分类--小插曲的更多相关文章

  1. 文本分类学习(六) AdaBoost和SVM

    直接从特征提取,跳到了BoostSVM,是因为自己一直在写程序,分析垃圾文本,和思考文本分类用于识别垃圾文本的短处.自己学习文本分类就是为了识别垃圾文本. 中间的博客待自己研究透彻后再补上吧. 因为获 ...

  2. 文本分类学习 (五) 机器学习SVM的前奏-特征提取(卡方检验续集)

    前言: 上一篇比较详细的介绍了卡方检验和卡方分布.这篇我们就实际操刀,找到一些训练集,正所谓纸上得来终觉浅,绝知此事要躬行.然而我在躬行的时候,发现了卡方检验对于文本分类来说应该把公式再变形一般,那样 ...

  3. 文本分类学习 (七)支持向量机SVM 的前奏 结构风险最小化和VC维度理论

    前言: 经历过文本的特征提取,使用LibSvm工具包进行了测试,Svm算法的效果还是很好的.于是开始逐一的去了解SVM的原理. SVM 是在建立在结构风险最小化和VC维理论的基础上.所以这篇只介绍关于 ...

  4. 文本分类学习 (十)构造机器学习Libsvm 的C# wrapper(调用c/c++动态链接库)

    前言: 对于SVM的了解,看前辈写的博客加上读论文对于SVM的皮毛知识总算有点了解,比如线性分类器,和求凸二次规划中用到的高等数学知识.然而SVM最核心的地方应该在于核函数和求关于α函数的极值的方法: ...

  5. 使用libsvm实现文本分类

    @Hcy(黄灿奕) 文本分类,首先它是分类问题,应该对应着分类过程的两个重要的步骤,一个是使用训练数据集训练分类器,另一个就是使用测试数据集来评价分类器的分类精度.然而,作为文本分类,它还具有文本这样 ...

  6. 文本分类实战(十)—— BERT 预训练模型

    1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...

  7. 使用PyTorch建立你的第一个文本分类模型

    概述 学习如何使用PyTorch执行文本分类 理解解决文本分类时所涉及的要点 学习使用包填充(Pack Padding)特性 介绍 我总是使用最先进的架构来在一些比赛提交模型结果.得益于PyTorch ...

  8. 文本分类:Keras+RNN vs传统机器学习

    摘要:本文通过Keras实现了一个RNN文本分类学习的案例,并详细介绍了循环神经网络原理知识及与机器学习对比. 本文分享自华为云社区<基于Keras+RNN的文本分类vs基于传统机器学习的文本分 ...

  9. fastText、TextCNN、TextRNN……这里有一套NLP文本分类深度学习方法库供你选择

    https://mp.weixin.qq.com/s/_xILvfEMx3URcB-5C8vfTw 这个库的目的是探索用深度学习进行NLP文本分类的方法. 它具有文本分类的各种基准模型,还支持多标签分 ...

随机推荐

  1. 【BZOJ-2864】战火星空 计算几何 + 最大流

    2864: 战火星空 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 33  Solved: 14[Submit][Status][Discuss] D ...

  2. 20172308《Java软件结构与数据结构》第二周学习总结

    教材学习内容总结 第 3 章 集合概述--栈 集合:一种聚集.组织了其他对象的对象 软件系统中的另一个类或对象通过集合预定的方式与该集合进行交互来使用这些集合 多年以来软件开发和研究人员定义了一些特定 ...

  3. 20172319 2018.10.12《Java程序设计教程》第6周课堂实践(补写博客)

    20172319 2018.10.12 <Java程序设计教程>第6周课堂测验 课程:<程序设计与数据结构> 班级:1723 学生:唐才铭 学号:20172319 指导老师:王 ...

  4. 喵哈哈村的魔法考试 Round #4 (Div.2) 题解

    有任何疑问,可以加我QQ:475517977进行讨论. A 喵哈哈村的嘟嘟熊魔法(1) 题解 这道题我们只要倒着来做就可以了,因为交换杯子是可逆的,我们倒着去模拟一遍就好了. 有个函数叫做swap(a ...

  5. java读取记事本文件第一个字符遇到的一个坑

    记事本数据是这样的: Faq_faqTitle=常见问题_标题Faq_faqKeyword=关键字Faq_faqDescription=FAQ描述...... 文件编码:utf-8有签名 然后用jav ...

  6. 使用CefSharp在.Net程序中嵌入Chrome浏览器(八)——Cookie

    CEF中的Cookie是通过CookieManager来管理的,可以用它来设置发送的Cookie. 发送Cookie 发送Cookie的一个基本示例如下: var cookieManager = _c ...

  7. [Winform]检测exe是否已经运行,并将其置顶

    摘要 在很多pc应用中,基本上都需要有这样的判断,保证在一个终端只运行一个winform的client.并且如果最小化了,用户再次双击桌面图标的时候,将client置顶显示. 解决方案 需要使用win ...

  8. 任务失败,因为未找到“AxImpexe”,或未安装正确的 Microsoft Windows SDK

    jenkins自动构建.net时发生错误,查看Console Output看到如下错误: C:\Windows\Microsoft.NET\Framework\v4.0.30319\Microsoft ...

  9. 新版ADT创建项目时出现appcompat_v7的问题

    做Android开发的朋友最近会发现,更新ADT至22.6.0版本之后,创建新的安装项目,会出现appcompat_v7的内容.并且是创建一个新的内容就会出现.这到底是怎么回事呢?原来appcompa ...

  10. 使用Application.GetResourceStream方法加载资源时得到的总是null

    我们可以预先把程序中用到的资源,如图片,音乐等放入项目中,打包进XAP文档,需要的时候从中调用.下面就说说具体实现方法. 第一步,把数据存进项目. 1.右键点击项目名称-添加-新建文件夹(英文版请自行 ...