JDK源码分析(6)ConcurrentHashMap
ConcurreentHashMap的实现原理与使用
ConcurrentHashMap是线程安全且高效的HashMap。
为什么要使用ConcurrentHashMap
在并发编程中使用HashMap可能导致程序死循环。而使用线程安全的HashTable效率又非常低下,基于以上两个原因,便有了ConcurrentHashMap的登场机会。
- 线程不安全的HashMap - 在多线程环境下,使用HashMap进行put操作会引起死循环,导致CPU利用率接近100%,所以在并发情况下不能使用HashMap。 - HashMap在并发执行put操作时会引起死循环,是因为多线程会导致HashMap的Entry链表形成环形数据结构,一旦形成环形数据结构,Entry的next节点永远不为空,,就会产生死循环获取Entry。 
- 效率低下的HashTable - HashTable容器使用了synchronized来保证线程安全,但在线程竞争激烈的情况下HashTable的效率非常低下。因为当一个线程访问HashTable的同步方法,其他线程也访问HashTable的同步方法时,会进入阻塞或轮询状态。 
- ConcurrentHashMap的锁分段技术可有效提升并发访问率 - 容器里有很多把锁,每一把锁用于锁容器中其中一部分数据,那么当多线程访问容器里不同数据段的数据时,线程间就不会存在锁竞争,从而可以有效提高并发访问效率,这就是ConcurrentHashMap所使用的锁分段技术。 
ConcurrentHashMap的结构
ConcurrentHashMap是由Segment数组结构和HashEntry数据结构组成。Segment是一种可重入锁(ReentrantLock),在ConcurrentHashMap里扮演锁的角色;HashEntry则用于存储键值对数据。


ConcurrentHashMap的操作
get操作
Segment的get操作实现非常简单和高效。先经过一次再散列,然后使用这个散列值通过散列运算定位到Segment,再通过散列算法定位到元素:
public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    int h = spread(key.hashCode());
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {
         if ((eh = e.hash) == h) {
             if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
         }
          else if (eh < 0)
             return (p = e.find(h, key)) != null ? p.val : null;
          while ((e = e.next) != null) {
              if (e.hash == h &&
                 ((ek = e.key) == key || (ek != null && key.equals(ek))))
                    return e.val;
           }
     }
     return null;
}
put操作
由于put操作方法里需要对共享变量进行写操作,所以为了线程安全,在操作共享变量时必须加锁。
public V put(K key, V value) {
        return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
        if (key == null || value == null) throw new NullPointerException();
        int hash = spread(key.hashCode());
        int binCount = 0;
        for (Node<K,V>[] tab = table;;) {
            Node<K,V> f; int n, i, fh;
            if (tab == null || (n = tab.length) == 0)
                tab = initTable();
            else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
                if (casTabAt(tab, i, null,
                             new Node<K,V>(hash, key, value, null)))
                    break;                   // no lock when adding to empty bin
            }
            else if ((fh = f.hash) == MOVED)
                tab = helpTransfer(tab, f);
            else {
                V oldVal = null;
                synchronized (f) {
                    if (tabAt(tab, i) == f) {
                        if (fh >= 0) {
                            binCount = 1;
                            for (Node<K,V> e = f;; ++binCount) {
                                K ek;
                                if (e.hash == hash &&
                                    ((ek = e.key) == key ||
                                     (ek != null && key.equals(ek)))) {
                                    oldVal = e.val;
                                    if (!onlyIfAbsent)
                                        e.val = value;
                                    break;
                                }
                                Node<K,V> pred = e;
                                if ((e = e.next) == null) {
                                    pred.next = new Node<K,V>(hash, key,
                                                              value, null);
                                    break;
                                }
                            }
                        }
                        else if (f instanceof TreeBin) {
                            Node<K,V> p;
                            binCount = 2;
                            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                                           value)) != null) {
                                oldVal = p.val;
                                if (!onlyIfAbsent)
                                    p.val = value;
                            }
                        }
                    }
                }
                if (binCount != 0) {
                    if (binCount >= TREEIFY_THRESHOLD)
                        treeifyBin(tab, i);
                    if (oldVal != null)
                        return oldVal;
                    break;
                }
            }
        }
        addCount(1L, binCount);
        return null;
    }
是否需要扩容
在插入元素前先会先判断Segment里的HashEntry数组是否超过容量(threshold),如果超过阈值,则对数组进行扩容
如何扩容
在扩容的时候,首先会创建一个容量是原来容量两倍的数组,然后对原数组里的元素进行再散列后插入到新的数组里。为了高效,ConcurrentHashMap不会对整个容器进行扩容,而只对某个segment进行扩容。
size操作
如果要统计整个ConcurrentHashMap里元素的大小,就必须统计所有Segment里的元素的大小后求和。
public int size() {
        long n = sumCount();
        return ((n < 0L) ? 0 :
                (n > (long)Integer.MAX_VALUE) ? Integer.MAX_VALUE :
                (int)n);
    }
JDK版本

ConcurrentHashMap源码分析
- table:默认为null,初始化发生在第一次插入操作,默认大小为16的数组,用来存储Node节点数据,扩容时大小总是2的幂次方。
- nextTable:默认为null,扩容时新生成的数组,其大小为原数组的两倍。
- sizeCtl :默认为0,用来控制table的初始化和扩容操作,具体应用在后续会体现出来。
- **-1 **代表table正在初始化
- **-N **表示有N-1个线程正在进行扩容操作
- 其余情况:
 1、如果table未初始化,表示table需要初始化的大小。
 2、如果table初始化完成,表示table的容量,默认是table大小的0.75倍,居然用这个公式算0.75(n - (n >>> 2))。
- Node:保存key,value及key的hash值的数据结构。
class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    volatile V val;
    volatile Node<K,V> next;
    ...
}
其中value和next都用volatile修饰,保证并发的可见性。
- ForwardingNode:一个特殊的Node节点,hash值为-1,其中存储nextTable的引用。
final class ForwardingNode<K,V> extends Node<K,V> {
    final Node<K,V>[] nextTable;
    ForwardingNode(Node<K,V>[] tab) {
        super(MOVED, null, null, null);
        this.nextTable = tab;
    }
}
只有table发生扩容的时候,ForwardingNode才会发挥作用,作为一个占位符放在table中表示当前节点为null或则已经被移动。
实例初始化
实例化ConcurrentHashMap时带参数时,会根据参数调整table的大小,假设参数为100,最终会调整成256,确保table的大小总是2的幂次方,算法如下:
ConcurrentHashMap<String, String> hashMap = new ConcurrentHashMap<>(100);
private static final int tableSizeFor(int c) {
    int n = c - 1;
    n |= n >>> 1;
    n |= n >>> 2;
    n |= n >>> 4;
    n |= n >>> 8;
    n |= n >>> 16;
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
注意,ConcurrentHashMap在构造函数中只会初始化sizeCtl值,并不会直接初始化table,而是延缓到第一次put操作。
table初始化
前面已经提到过,table初始化操作会延缓到第一次put行为。但是put是可以并发执行的,Doug Lea是如何实现table只初始化一次的?让我们来看看源码的实现。
private final Node<K,V>[] initTable() {
    Node<K,V>[] tab; int sc;
    while ((tab = table) == null || tab.length == 0) {
//如果一个线程发现sizeCtl<0,意味着另外的线程执行CAS操作成功,当前线程只需要让出cpu时间片
        if ((sc = sizeCtl) < 0)
            Thread.yield(); // lost initialization race; just spin
        else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
            try {
                if ((tab = table) == null || tab.length == 0) {
                    int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
                    @SuppressWarnings("unchecked")
                    Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
                    table = tab = nt;
                    sc = n - (n >>> 2);
                }
            } finally {
                sizeCtl = sc;
            }
            break;
        }
    }
    return tab;
}
sizeCtl默认为0,如果ConcurrentHashMap实例化时有传参数,sizeCtl会是一个2的幂次方的值。所以执行第一次put操作的线程会执行Unsafe.compareAndSwapInt方法修改sizeCtl为-1,有且只有一个线程能够修改成功,其它线程通过Thread.yield()让出CPU时间片等待table初始化完成。
put操作
假设table已经初始化完成,put操作采用CAS+synchronized实现并发插入或更新操作,具体实现如下。
final V putVal(K key, V value, boolean onlyIfAbsent) {
    if (key == null || value == null) throw new NullPointerException();
    int hash = spread(key.hashCode());
    int binCount = 0;
    for (Node<K,V>[] tab = table;;) {
        Node<K,V> f; int n, i, fh;
        if (tab == null || (n = tab.length) == 0)
            tab = initTable();
        else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
            if (casTabAt(tab, i, null, new Node<K,V>(hash, key, value, null)))
                break;                   // no lock when adding to empty bin
        }
        else if ((fh = f.hash) == MOVED)
            tab = helpTransfer(tab, f);
        ...省略部分代码
    }
    addCount(1L, binCount);
    return null;
}
- hash算法
static final int spread(int h) {return (h ^ (h >>> 16)) & HASH_BITS;}
- table中定位索引位置,n是table的大小
int index = (n - 1) & hash
- 获取table中对应索引的元素f。
 Doug Lea采用Unsafe.getObjectVolatile来获取,也许有人质疑,直接table[index]不可以么,为什么要这么复杂?
 在java内存模型中,我们已经知道每个线程都有一个工作内存,里面存储着table的副本,虽然table是volatile修饰的,但不能保证线程每次都拿到table中的最新元素,Unsafe.getObjectVolatile可以直接获取指定内存的数据,保证了每次拿到数据都是最新的。
- 如果f为null,说明table中这个位置第一次插入元素,利用Unsafe.compareAndSwapObject方法插入Node节点。
- 如果CAS成功,说明Node节点已经插入,随后addCount(1L, binCount)方法会检查当前容量是否需要进行扩容。
- 如果CAS失败,说明有其它线程提前插入了节点,自旋重新尝试在这个位置插入节点。
- 如果f的hash值为-1,说明当前f是ForwardingNode节点,意味有其它线程正在扩容,则一起进行扩容操作。
- 其余情况把新的Node节点按链表或红黑树的方式插入到合适的位置,这个过程采用同步内置锁实现并发,代码如下:
synchronized (f) {
    if (tabAt(tab, i) == f) {
        if (fh >= 0) {
            binCount = 1;
            for (Node<K,V> e = f;; ++binCount) {
                K ek;
                if (e.hash == hash &&
                    ((ek = e.key) == key ||
                     (ek != null && key.equals(ek)))) {
                    oldVal = e.val;
                    if (!onlyIfAbsent)
                        e.val = value;
                    break;
                }
                Node<K,V> pred = e;
                if ((e = e.next) == null) {
                    pred.next = new Node<K,V>(hash, key,
                                              value, null);
                    break;
                }
            }
        }
        else if (f instanceof TreeBin) {
            Node<K,V> p;
            binCount = 2;
            if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
                                           value)) != null) {
                oldVal = p.val;
                if (!onlyIfAbsent)
                    p.val = value;
            }
        }
    }
}
在节点f上进行同步,节点插入之前,再次利用tabAt(tab, i) == f判断,防止被其它线程修改。
- 如果f.hash >= 0,说明f是链表结构的头结点,遍历链表,如果找到对应的node节点,则修改value,否则在链表尾部加入节点。
- 如果f是TreeBin类型节点,说明f是红黑树根节点,则在树结构上遍历元素,更新或增加节点。
- 如果链表中节点数binCount >= TREEIFY_THRESHOLD(默认是8),则把链表转化为红黑树结构。
table扩容
当table容量不足的时候,即table的元素数量达到容量阈值sizeCtl,需要对table进行扩容。
整个扩容分为两部分:
- 构建一个nextTable,大小为table的两倍。
- 把table的数据复制到nextTable中。
这两个过程在单线程下实现很简单,但是ConcurrentHashMap是支持并发插入的,扩容操作自然也会有并发的出现,这种情况下,第二步可以支持节点的并发复制,这样性能自然提升不少,但实现的复杂度也上升了一个台阶。
先看第一步,构建nextTable,毫无疑问,这个过程只能只有单个线程进行nextTable的初始化,具体实现如下:
private final void addCount(long x, int check) {
    ...
    if (check >= 0) {
        Node<K,V>[] tab, nt; int n, sc;
        while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
               (n = tab.length) < MAXIMUM_CAPACITY) {
            int rs = resizeStamp(n);
            if (sc < 0) {
                if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
                    sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
                    transferIndex <= 0)
                    break;
                if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
                    transfer(tab, nt);
            }
            else if (U.compareAndSwapInt(this, SIZECTL, sc,
                                         (rs << RESIZE_STAMP_SHIFT) + 2))
                transfer(tab, null);
            s = sumCount();
        }
    }
}
通过Unsafe.compareAndSwapInt修改sizeCtl值,保证只有一个线程能够初始化nextTable,扩容后的数组长度为原来的两倍,但是容量是原来的1.5。
节点从table移动到nextTable,大体思想是遍历、复制的过程。
- 首先根据运算得到需要遍历的次数i,然后利用tabAt方法获得i位置的元素f,初始化一个forwardNode实例fwd。
- 如果f == null,则在table中的i位置放入fwd,这个过程是采用Unsafe.compareAndSwapObjectf方法实现的,很巧妙的实现了节点的并发移动。
- 如果f是链表的头节点,就构造一个反序链表,把他们分别放在nextTable的i和i+n的位置上,移动完成,采用Unsafe.putObjectVolatile方法给table原位置赋值fwd。
- 如果f是TreeBin节点,也做一个反序处理,并判断是否需要untreeify,把处理的结果分别放在nextTable的i和i+n的位置上,移动完成,同样采用Unsafe.putObjectVolatile方法给table原位置赋值fwd。
遍历过所有的节点以后就完成了复制工作,把table指向nextTable,并更新sizeCtl为新数组大小的0.75倍 ,扩容完成。
红黑树构造
注意:如果链表结构中元素超过TREEIFY_THRESHOLD阈值,默认为8个,则把链表转化为红黑树,提高遍历查询效率。
if (binCount != 0) {
    if (binCount >= TREEIFY_THRESHOLD)
        treeifyBin(tab, i);
    if (oldVal != null)
        return oldVal;
    break;
}
接下来我们看看如何构造树结构,代码如下:
private final void treeifyBin(Node<K,V>[] tab, int index) {
    Node<K,V> b; int n, sc;
    if (tab != null) {
        if ((n = tab.length) < MIN_TREEIFY_CAPACITY)
            tryPresize(n << 1);
        else if ((b = tabAt(tab, index)) != null && b.hash >= 0) {
            synchronized (b) {
                if (tabAt(tab, index) == b) {
                    TreeNode<K,V> hd = null, tl = null;
                    for (Node<K,V> e = b; e != null; e = e.next) {
                        TreeNode<K,V> p =
                            new TreeNode<K,V>(e.hash, e.key, e.val,
                                              null, null);
                        if ((p.prev = tl) == null)
                            hd = p;
                        else
                            tl.next = p;
                        tl = p;
                    }
                    setTabAt(tab, index, new TreeBin<K,V>(hd));
                }
            }
        }
    }
}
可以看出,生成树节点的代码块是同步的,进入同步代码块之后,再次验证table中index位置元素是否被修改过。
1、根据table中index位置Node链表,重新生成一个hd为头结点的TreeNode链表。
2、根据hd头结点,生成TreeBin树结构,并把树结构的root节点写到table的index位置的内存中,具体实现如下:
TreeBin(TreeNode<K,V> b) {
    super(TREEBIN, null, null, null);
    this.first = b;
    TreeNode<K,V> r = null;
    for (TreeNode<K,V> x = b, next; x != null; x = next) {
        next = (TreeNode<K,V>)x.next;
        x.left = x.right = null;
        if (r == null) {
            x.parent = null;
            x.red = false;
            r = x;
        }
        else {
            K k = x.key;
            int h = x.hash;
            Class<?> kc = null;
            for (TreeNode<K,V> p = r;;) {
                int dir, ph;
                K pk = p.key;
                if ((ph = p.hash) > h)
                    dir = -1;
                else if (ph < h)
                    dir = 1;
                else if ((kc == null &&
                          (kc = comparableClassFor(k)) == null) ||
                         (dir = compareComparables(kc, k, pk)) == 0)
                    dir = tieBreakOrder(k, pk);
                    TreeNode<K,V> xp = p;
                if ((p = (dir <= 0) ? p.left : p.right) == null) {
                    x.parent = xp;
                    if (dir <= 0)
                        xp.left = x;
                    else
                        xp.right = x;
                    r = balanceInsertion(r, x);
                    break;
                }
            }
        }
    }
    this.root = r;
    assert checkInvariants(root);
}
主要根据Node节点的hash值大小构建二叉树。这个红黑树的构造过程实在有点复杂,感兴趣的同学可以看看源码。
get操作
get操作和put操作相比,显得简单了许多。
public V get(Object key) {
    Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
    int h = spread(key.hashCode());
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (e = tabAt(tab, (n - 1) & h)) != null) {
        if ((eh = e.hash) == h) {
            if ((ek = e.key) == key || (ek != null && key.equals(ek)))
                return e.val;
        }
        else if (eh < 0)
            return (p = e.find(h, key)) != null ? p.val : null;
        while ((e = e.next) != null) {
            if (e.hash == h &&
                ((ek = e.key) == key || (ek != null && key.equals(ek))))
                return e.val;
        }
    }
    return null;
}
- 判断table是否为空,如果为空,直接返回null。
- 计算key的hash值,并获取指定table中指定位置的Node节点,通过遍历链表或则树结构找到对应的节点,返回value值。
JDK源码分析(6)ConcurrentHashMap的更多相关文章
- 【JDK】JDK源码分析-HashMap(2)
		前文「JDK源码分析-HashMap(1)」分析了 HashMap 的内部结构和主要方法的实现原理.但是,面试中通常还会问到很多其他的问题,本文简要分析下常见的一些问题. 这里再贴一下 HashMap ... 
- JDK源码分析—— ArrayBlockingQueue 和 LinkedBlockingQueue
		JDK源码分析—— ArrayBlockingQueue 和 LinkedBlockingQueue 目的:本文通过分析JDK源码来对比ArrayBlockingQueue 和LinkedBlocki ... 
- JDK 源码分析(4)—— HashMap/LinkedHashMap/Hashtable
		JDK 源码分析(4)-- HashMap/LinkedHashMap/Hashtable HashMap HashMap采用的是哈希算法+链表冲突解决,table的大小永远为2次幂,因为在初始化的时 ... 
- JDK源码分析(三)—— LinkedList
		参考文档 JDK源码分析(4)之 LinkedList 相关 
- JDK源码分析(一)—— String
		dir 参考文档 JDK源码分析(1)之 String 相关 
- JDK源码分析(2)LinkedList
		JDK版本 LinkedList简介 LinkedList 是一个继承于AbstractSequentialList的双向链表.它也可以被当作堆栈.队列或双端队列进行操作. LinkedList 实现 ... 
- 【JDK】JDK源码分析-LinkedHashMap
		概述 前文「JDK源码分析-HashMap(1)」分析了 HashMap 主要方法的实现原理(其他问题以后分析),本文分析下 LinkedHashMap. 先看一下 LinkedHashMap 的类继 ... 
- 【JDK】JDK源码分析-HashMap(1)
		概述 HashMap 是 Java 开发中最常用的容器类之一,也是面试的常客.它其实就是前文「数据结构与算法笔记(二)」中「散列表」的实现,处理散列冲突用的是“链表法”,并且在 JDK 1.8 做了优 ... 
- 【JDK】JDK源码分析-TreeMap(2)
		前文「JDK源码分析-TreeMap(1)」分析了 TreeMap 的一些方法,本文分析其中的增删方法.这也是红黑树插入和删除节点的操作,由于相对复杂,因此单独进行分析. 插入操作 该操作其实就是红黑 ... 
- 【JDK】JDK源码分析-Vector
		概述 上文「JDK源码分析-ArrayList」主要分析了 ArrayList 的实现原理.本文分析 List 接口的另一个实现类:Vector. Vector 的内部实现与 ArrayList 类似 ... 
随机推荐
- 性能调优之vmstat命令
			vmstat是Virtual Meomory Statistics(虚拟内存统计)的缩写,可对操作系统的虚拟内存.进程.IO读写.CPU活动等进行监视.它是对系统的整体情况进行统计,不足之处是无法对某 ... 
- A2dp初始化流程源码分析
			蓝牙启动的时候,会涉及到各个profile 的启动.这篇文章分析一下,蓝牙中a2dp profile的初始化流程. 我们从AdapterState.java中对于USER_TURN_ON 消息的处理说 ... 
- 编写一个供浏览器端使用的NPM包
			此文已由作者吴维伟授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 在编写程序时,总会有一些代码是我们不愿意一遍又一遍重复地去写的,比如一些UI或交互相似组件,或是一些相似的流 ... 
- slurm.conf系统初始配置
			#slurm集群配置 ##集群名称 ClusterName=myslurm ##主控制器的主机名 ControlMachine=node11 ##主控制器的IP地址 ControlAddr=192.1 ... 
- Gitlab环境快速部署(RPM包方式安装)
			之前梳理了一篇Gitlab的安装CI持续集成系统环境---部署Gitlab环境完整记录,但是这是bitnami一键安装的,版本比较老.下面介绍使用rpm包安装Gitlab,下载地址:https://m ... 
- kvm虚拟化关闭虚拟网卡virbr0的方法
			我们知道:kvm虚拟化环境安装好后,ifconfig会发现多了一个虚拟网卡virbr0这是由于安装和启用了libvirt服务后生成的,libvirt在服务器(host)上生成一个 virtual ne ... 
- [Android]记录一次处理app:transformDexArchiveWithExternalLibsDexMergerForDebug错误
			第一种情况: Android 目录结构如下: app中build.gradle包含: implementation 'com.squareup.okhttp3:okhttp:3.6.0' implem ... 
- 阿里云OSS下载pdf文件,并在pdf文件上添加水印
			代码: 兵马未动,粮草先行 作者: 传说中的汽水枪 如有错误,请留言指正,欢迎一起探讨. 转载请注明出处. 公司要求从阿里云OSS下载pdf文件并且需要添加水印. 因此这里总结一下. 首先添加了一个F ... 
- 网站响应式布局/网站自适应问题+rem、em、px、pt及网站字体大小设配
			Bootstrap 网格系统: Bootstrap CSS: Bootstrap 组件及插件: 一.什么是响应式布局? 响应式布局是Ethan Marcotte在2010年5月份提出的一个 ... 
- Linux内核及分析 第四周 扒开系统调用的三层皮(上)
			实验过程 选择20号系统调用getpid(取得进程识别码) 在网上查询getpid函数的C语言代码以及其嵌入式汇编语句 C语言代码: #include <stdio.h> #include ... 
