codeforces604B
More Cowbell
Kevin Sun wants to move his precious collection of n cowbells from Naperthrill to Exeter, where there is actually grass instead of corn. Before moving, he must pack his cowbells into k boxes of a fixed size. In order to keep his collection safe during transportation, he won't place more than two cowbells into a single box. Since Kevin wishes to minimize expenses, he is curious about the smallest size box he can use to pack his entire collection.
Kevin is a meticulous cowbell collector and knows that the size of his i-th (1 ≤ i ≤ n) cowbell is an integer si. In fact, he keeps his cowbells sorted by size, so si - 1 ≤ si for any i > 1. Also an expert packer, Kevin can fit one or two cowbells into a box of size s if and only if the sum of their sizes does not exceed s. Given this information, help Kevin determine the smallest s for which it is possible to put all of his cowbells into k boxes of size s.
Input
The first line of the input contains two space-separated integers n and k (1 ≤ n ≤ 2·k ≤ 100 000), denoting the number of cowbells and the number of boxes, respectively.
The next line contains n space-separated integers s1, s2, ..., sn (1 ≤ s1 ≤ s2 ≤ ... ≤ sn ≤ 1 000 000), the sizes of Kevin's cowbells. It is guaranteed that the sizes si are given in non-decreasing order.
Output
Print a single integer, the smallest s for which it is possible for Kevin to put all of his cowbells into k boxes of size s.
Examples
2 1
2 5
7
4 3
2 3 5 9
9
3 2
3 5 7
8
Note
In the first sample, Kevin must pack his two cowbells into the same box.
In the second sample, Kevin can pack together the following sets of cowbells: {2, 3}, {5} and {9}.
In the third sample, the optimal solution is {3, 5} and {7}.
sol:很显然答案是可以二分的,难点在于判断当前答案是否可行,一种较为容易想到的贪心,尽量用一个最大的配上一个最小的,易知一定是最优的
#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=;
int n,m,a[N];
inline bool Judge(int mid)
{
int l=,r=n,cnt=;
while(l<=r)
{
if(a[l]+a[r]<=mid)
{
cnt++; l++; r--;
}
else
{
cnt++; r--;
}
}
return (cnt<=m)?:;
}
int main()
{
int i;
R(n); R(m);
for(i=;i<=n;i++) R(a[i]);
sort(a+,a+n+);
int l=a[n],r=;
while(l<=r)
{
int mid=(l+r)>>;
if(Judge(mid)) r=mid-;
else l=mid+;
}
Wl(l);
return ;
}
/*
input
2 1
2 5
output
7 input
4 3
2 3 5 9
output
9 input
3 2
3 5 7
output
8
*/
codeforces604B的更多相关文章
随机推荐
- 【Codeforces Gym 100725K】Key Insertion
Codeforces Gym 100725K 题意:给定一个初始全0的序列,然后给\(n\)个查询,每一次调用\(Insert(L_i,i)\),其中\(Insert(L,K)\)表示在第L位插入K, ...
- WIFI底座
自己贴片的51+WIFI的开发板终于到了..还是贴片的好看 美中不足的是需要改一个电阻的阻值..还有就是由于自己的8266和51单片机一块断电上电,所以如果用的USB线的质量不好就会出现 下载不了程序 ...
- Excel 2007 底层实现方式
一.EXCEL的底层实现 能力有限,了解的比较浅,有不足之处望指正,首先看下图: 一. excel2007是使用xml格式来存储的,把一个excel文件后缀改为.zip,打开之后就直接可以看到一个ex ...
- abp 取消权限校验
在abp中,通过ABP_PERMISSIONS表来存储定义appService中的方法权限校验.设置方式如下: [AbpAuthorize(PermissionNames.Pages_Users)] ...
- java算法----排序----(6)希尔排序(最小增量排序)
package log; public class Test4 { /** * java算法---希尔排序(最小增量排序) * * @param args */ public static void ...
- 【LeetCode106】Construct Binary Tree from Inorder and Postorder Traversal★★
1.题目 2.思路 思路和LeetCode105类似,见上篇. 3.java代码 //测试 public class BuildTreeUsingInorderAndPostorder { publi ...
- Luogu3514 POI2011 Lollipop 递推、构造
题目传送门:https://www.luogu.org/problemnew/show/P3514 题意:给出一个只有$1$和$2$的长度为$N$的数列,$M$次询问是否存在一段连续子区间和为$K$. ...
- odoo11 添加自定义模块报错问题
在昨天解决了数据库管理页面布局混乱的问题之后,如何设置自己的custom_addons模块文件夹成了主要问题,建立自己的custom_addons文件夹,可以使用git命令来管理自己所写代码的版本了, ...
- Nancy异步用法
个人笔记,记录Nancy异步用法 基类,所有请求都将首先执行该类,并执行Before事件 namespace CxyAdvert.Base { public class BaseNancyModel ...
- R实战 第十一篇:处理缺失值
在真实的世界中,缺失数据是经常出现的,并可能对分析的结果造成影响.在R中,经常使用VIM(Visualization and Imputation of Missing values)包来对缺失值进行 ...