Pandas 合并merge
pandas中的merge和concat类似,但主要是用于两组有key column的数据,统一索引的数据. 通常也被用在Database的处理当中.
1、依据一组key合并
>>> import pandas as pd
>>> left = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
... 'A': ['A0', 'A1', 'A2', 'A3'],
... 'B': ['B0', 'B1', 'B2', 'B3']})
>>> right = pd.DataFrame({'key': ['K0', 'K1', 'K2', 'K3'],
... 'C': ['C0', 'C1', 'C2', 'C3'],
... 'D': ['D0', 'D1', 'D2', 'D3']})
>>> print(left)
key A B
0 K0 A0 B0
1 K1 A1 B1
2 K2 A2 B2
3 K3 A3 B3
>>> print(right)
key C D
0 K0 C0 D0
1 K1 C1 D1
2 K2 C2 D2
3 K3 C3 D3 #依据key column合并,并打印出
>>> res = pd.merge(left, right, on='key')
>>> print(res)
key A B C D
0 K0 A0 B0 C0 D0
1 K1 A1 B1 C1 D1
2 K2 A2 B2 C2 D2
3 K3 A3 B3 C3 D3
2、依据两组key合并
合并时有4种方法how = ['left', 'right', 'outer', 'inner'],预设值how='inner'
>>> left = pd.DataFrame({'key1': ['K0', 'K0', 'K1', 'K2'],
... 'key2': ['K0', 'K1', 'K0', 'K1'],
... 'A': ['A0', 'A1', 'A2', 'A3'],
... 'B': ['B0', 'B1', 'B2', 'B3']})
>>> right = pd.DataFrame({'key1': ['K0', 'K1', 'K1', 'K2'],
... 'key2': ['K0', 'K0', 'K0', 'K0'],
... 'C': ['C0', 'C1', 'C2', 'C3'],
... 'D': ['D0', 'D1', 'D2', 'D3']})
>>> print(left)
key1 key2 A B
0 K0 K0 A0 B0
1 K0 K1 A1 B1
2 K1 K0 A2 B2
3 K2 K1 A3 B3
>>> print(right)
key1 key2 C D
0 K0 K0 C0 D0
1 K1 K0 C1 D1
2 K1 K0 C2 D2
3 K2 K0 C3 D3
##依据key1与key2 columns进行合并,并打印出四种结果['left', 'right', 'outer', 'inner']
>>> res = pd.merge(left, right, on=['key1', 'key2'], how='inner')
>>> print(res)
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K1 K0 A2 B2 C1 D1
2 K1 K0 A2 B2 C2 D2
>>> res = pd.merge(left, right, on=['key1', 'key2'], how='outer')
>>> print(res)
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K0 K1 A1 B1 NaN NaN
2 K1 K0 A2 B2 C1 D1
3 K1 K0 A2 B2 C2 D2
4 K2 K1 A3 B3 NaN NaN
5 K2 K0 NaN NaN C3 D3
>>> res = pd.merge(left, right, on=['key1', 'key2'], how='left')
>>> print(res)
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K0 K1 A1 B1 NaN NaN
2 K1 K0 A2 B2 C1 D1
3 K1 K0 A2 B2 C2 D2
4 K2 K1 A3 B3 NaN NaN
>>> res = pd.merge(left, right, on=['key1', 'key2'], how='right')
>>> print(res)
key1 key2 A B C D
0 K0 K0 A0 B0 C0 D0
1 K1 K0 A2 B2 C1 D1
2 K1 K0 A2 B2 C2 D2
3 K2 K0 NaN NaN C3 D3
3、Indicator
indicator=True会将合并的记录放在新的一列。
>>> df1 = pd.DataFrame({'col1':[0,1], 'col_left':['a','b']})
>>> df2 = pd.DataFrame({'col1':[1,2,2],'col_right':[2,2,2]})
>>> print(df1)
col1 col_left
0 0 a
1 1 b
>>> print(df2)
col1 col_right
0 1 2
1 2 2
2 2 2
# 依据col1进行合并,并启用indicator=True,最后打印出
>>> res = pd.merge(df1, df2, on='col1', how='outer', indicator=True)
>>> print(res)
col1 col_left col_right _merge
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only
# 自定indicator column的名称,并打印出
>>> res = pd.merge(df1, df2, on='col1', how='outer', indicator='indicator_column')
>>> print(res)
col1 col_left col_right indicator_column
0 0 a NaN left_only
1 1 b 2.0 both
2 2 NaN 2.0 right_only
3 2 NaN 2.0 right_only
4、依据index合并
>>> left = pd.DataFrame({'A': ['A0', 'A1', 'A2'],
... 'B': ['B0', 'B1', 'B2']},
... index=['K0', 'K1', 'K2'])
>>> right = pd.DataFrame({'C': ['C0', 'C2', 'C3'],
... 'D': ['D0', 'D2', 'D3']},
... index=['K0', 'K2', 'K3'])
>>> print(left)
A B
K0 A0 B0
K1 A1 B1
K2 A2 B2
>>> print(right)
C D
K0 C0 D0
K2 C2 D2
K3 C3 D3
#依据左右资料集的index进行合并,how='outer',并打印出
>>> res = pd.merge(left, right, left_index=True, right_index=True, how='outer')
>>> print(res)
A B C D
K0 A0 B0 C0 D0
K1 A1 B1 NaN NaN
K2 A2 B2 C2 D2
K3 NaN NaN C3 D3
#依据左右资料集的index进行合并,how='inner',并打印出
>>> res = pd.merge(left, right, left_index=True, right_index=True, how='inner')
>>> print(res)
A B C D
K0 A0 B0 C0 D0
K2 A2 B2 C2 D2
5、解决overlapping的问题
>>> boys = pd.DataFrame({'k': ['K0', 'K1', 'K2'], 'age': [1, 2, 3]})
>>> girls = pd.DataFrame({'k': ['K0', 'K0', 'K3'], 'age': [4, 5, 6]})
>>> print(boys)
k age
0 K0 1
1 K1 2
2 K2 3
>>> print(girls)
k age
0 K0 4
1 K0 5
2 K3 6
#使用suffixes解决overlapping的问题
>>> res = pd.merge(boys, girls, on='k', suffixes=['_boy', '_girl'], how='inner')
>>> print(res)
k age_boy age_girl
0 K0 1 4
1 K0 1 5
Pandas 合并merge的更多相关文章
- 【转】Pandas学习笔记(六)合并 merge
Pandas学习笔记系列: Pandas学习笔记(一)基本介绍 Pandas学习笔记(二)选择数据 Pandas学习笔记(三)修改&添加值 Pandas学习笔记(四)处理丢失值 Pandas学 ...
- pandas 合并数据
1. pandas 的merge,join 就不说了. 2. 神奇的: concat append 参考: PANDAS 数据合并与重塑(concat篇) 3.
- SVN SVN合并(Merge)与拉取分支(Branch/tag)操作简介
SVN合并(Merge)与拉取分支(Branch/tag)操作简介 合并(Merge) 例子:把对feature_branch\project_name_v3.3.7_branch的修改合并到deve ...
- R语言中的横向数据合并merge及纵向数据合并rbind的使用
R语言中的横向数据合并merge及纵向数据合并rbind的使用 我们经常会遇到两个数据框拥有相同的时间或观测值,但这些列却不尽相同.处理的办法就是使用merge(x, y ,by.x = ,by.y ...
- python pandas合并多个excel(xls和xlsx)文件(弹窗选择文件夹和保存文件)
# python pandas合并多个excel(xls和xlsx)文件(弹窗选择文件夹和保存文件) import tkinter as tk from tkinter import filedial ...
- python pandas 合并数据函数merge join concat combine_first 区分
pandas对象中的数据可以通过一些内置的方法进行合并:pandas.merge,pandas.concat,实例方法join,combine_first,它们的使用对象和效果都是不同的,下面进行区分 ...
- Pandas合并数据集之merge、join方法
合并数据集 pandas.merge 可根据一个或多个键将不同DataFrame中的行连接起来. pandas.concat 可以沿着一条轴将多个对象堆叠到一起. combine_first merg ...
- pandas 7 合并 merge 水平合并,数据会变宽
pd.merge( df1, df2, on=['key1', 'key2'], left_index=True, right_index=True, how=['left', 'right', 'o ...
- pandas之DataFrame合并merge
一.merge merge操作实现两个DataFrame之间的合并,类似于sql两个表之间的关联查询.merge的使用方法及参数解释如下: pd.merge(left, right, on=None, ...
随机推荐
- Java种的String
String中的常用方法 subString()的使用,charAt的使用方法: indexof等的用法 String和byte的转换,对于程序过程的传输很重要, ==和equals的比较 1equa ...
- base64图片内容下载转为图片保存
网页中的base64图片内容下载后,利用PIL转为图片保存 from skimage.io import imread from PIL import Image from cStringIO imp ...
- rabbitMQ windows 安装 入门
转: https://www.cnblogs.com/junrong624/p/4121656.html 这里需要下载 rabbitmq, 我网盘里有今天没时间上传了,下次吧 1.下载,其实erlan ...
- Percona XtraDB Cluster vs Galera Cluster vs MySQL Group Replication
Percona XtraDB Cluster vs Galera Cluster vs MySQL Group Replication Overview Galera Cluster 由 Coders ...
- Android Studio设置连续按两次退出APP
主要是在onKeyDown方法中进行操作,直接上代码. private long mTime; @Override public boolean onKeyDown(int keyCode, KeyE ...
- Python—requests模块详解
1.模块说明 requests是使用Apache2 licensed 许可证的HTTP库. 用python编写. 比urllib2模块更简洁. Request支持HTTP连接保持和连接池,支持使用co ...
- Python(算法)-时间复杂度和空间复杂度
时间复杂度 算法的时间复杂度是一个函数,它定量描述了该算法的运行时间,时间复杂度常用“O”表述,使用这种方式时,时间复杂度可被称为是渐近的,它考察当输入值大小趋近无穷时的情况 时间复杂度是用来估计算法 ...
- jvm常见的面试题
1. 内存模型以及分区,需要详细到每个区放什么. 2. 堆里面的分区:Eden,survival from to,老年代,各自的特点. 3. 对象创建方法,对象的内存分配,对象的访问定位. 4. GC ...
- win10 linux 子系统 所在 目录
C:\Users\用户名\AppData\Local\Packages\CanonicalGroupLimited.UbuntuonWindows_79rhkp1fndgsc\LocalState\r ...
- 63(原67).纯 CSS 创作单元素点阵 loader
原文地址:https://segmentfault.com/a/1190000015444368 感想:CSS又一次让我见识到它的强大之处 --> box-shadow . box-shadow ...