【CV】ICCV2015_Unsupervised Visual Representation Learning by Context Prediction
Unsupervised Visual Representation Learning by Context Prediction
Note here: it's a learning note on unsupervised learning model from Prof. Gupta's group.
Motivation:
- Similar to most motivations of unsupervised learning method, cut it out here.
Proposed Model:
- Given one central patch of the object, and another one arounding it, the model must guess the relative spatial configuration between these two patches.
- Intuition: when human doing this assignment, we get higher accuracy once we recognize what object it is and what it’s like with a whole look. That is to say, a model plays well on this game would have percepted the features of each object.
(i.e. we can get right answer for the following quizz once we recognize what objects they are.)


So the unsupervised representation learning can also be formulated as learning an embedding where images that are semantically similar close, while semantically different ones are far apart.
- Pipline:
- Feed two patches into a parallel convolutional network which share parameters.
- Fuse the feature vector of each patch and pass through stacked fully connected layers.
- Come out with an eight-dimension vector that predicts relative spatial configuration between the two patches.
- Compute loss, gradients and back propagate through this network to update weights.

Aoiding “trivial” solutions:
We need to preprocess images to avoid the model learns some trivial features, like:
- Low-level cues like boundary patterns or textures continuing between patches, which could potentially serve as a shortcut.
- Chromatic aberration: it arises from differences in the way the lens focuses light and different wavelengths. In some cameras, one color channel (commonly green) is shrunk toward the image center relative to the others. Once the network learns the absolute location on the lens, solving the relatve location task becomes trivial.
【CV】ICCV2015_Unsupervised Visual Representation Learning by Context Prediction的更多相关文章
- 【CV】ICCV2015_Unsupervised Learning of Visual Representations using Videos
Unsupervised Learning of Visual Representations using Videos Note here: it's a learning note on Prof ...
- 【CV】ICCV2015_Unsupervised Learning of Spatiotemporally Coherent Metrics
Unsupervised Learning of Spatiotemporally Coherent Metrics Note here: it's a learning note on the to ...
- 论文解读《Momentum Contrast for Unsupervised Visual Representation Learning》俗称 MoCo
论文题目:<Momentum Contrast for Unsupervised Visual Representation Learning> 论文作者: Kaiming He.Haoq ...
- Microsoft Azure Web Sites应用与实践【3】—— 通过Visual Studio Online在线编辑Microsoft Azure 网站
Microsoft Azure Web Sites应用与实践 系列: [1]—— 打造你的第一个Microsoft Azure Website [2]—— 通过本地IIS 远程管理Microsoft ...
- Momentum Contrast for Unsupervised Visual Representation Learning (MoCo)
Momentum Contrast for Unsupervised Visual Representation Learning 一.Methods Previously Proposed 1. E ...
- Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning 一.Methods Previously Proposed 1. E ...
- 论文阅读(Xiang Bai——【arXiv2016】Scene Text Detection via Holistic, Multi-Channel Prediction)
Xiang Bai--[arXiv2016]Scene Text Detection via Holistic, Multi-Channel Prediction 目录 作者和相关链接 方法概括 创新 ...
- 【VBS】使用Visual Studio调试VBS程序
首先要确保机器上安装了Visual Stuido, 然后打开命令行窗口执行如下命令,会弹出是否使用Visual Studio进行调试的确认窗口. 点[是]进行调试. WScript.exe [vbs文 ...
- 论文阅读笔记(五)【CVPR2012】:Large Scale Metric Learning from Equivalence Constraints
由于在读文献期间多次遇见KISSME,都引自这篇CVPR,所以详细学习一下. Introduction 度量学习在机器学习领域有很大作用,其中一类是马氏度量学习(Mahalanobis metric ...
随机推荐
- 初识Python - Python的历史(转)
声明: 本文转自维基百科 如有意见请联系删除 综述 该编程语言 的Python是在20世纪80年代末的设想,和实施是在1989年12月开始由吉多·范罗苏姆在CWI在荷兰的继任者农行能够异常处理,并与接 ...
- Git的上传步骤
Git的上传步骤 1.Git的命令基础 Git是当下最流行的版本控制工具(VCS),由linux系统之父linus开发.它能实现 团队中的代码协作开发,它在代码同步和代码管理方面功能强大,理念先进. ...
- JS实现奇偶数的判断
<html xmlns="http://www.w3.org/1999/xhtml" > <head> <title>标题页-学无忧(www.x ...
- Android ActionBar全然解析,使用官方推荐的最佳导航栏(上)
转载请注明出处:http://blog.csdn.net/guolin_blog/article/details/18234477 本篇文章主要内容来自于Android Doc.我翻译之后又做了些加工 ...
- mvn 的 provided 以及 test等等 还有git团队开发技巧
mvn 的 provided 以及 test等等 还有git团队开发技巧
- Excel函数详解:[127]ROWS函数用法
函数说明 1 函数语法: ROWS(array) 2 参数说明: array:表示要返回行数的数组.数组公式或单元格引用. END 函数实例-计算项目的数量 在B12单元格中输入公式“=ROWS( ...
- 1.9 Android程序签名打包
本节引言: 本节给大家介绍的是如何将我们的程序打包成Apk文件,并且为我们的Apk签名! 1.什么是签名,有什么用: Android APP都需要我们用一个证书对应用进行数字签名,不然的话是无法安装到 ...
- python 打印 emoji
python 打印 emoji 如需转发,请注明出处:小婷儿的python https://www.cnblogs.com/xxtalhr/p/10486506.html 一.Unicode字符集: ...
- SVN 安装vs插件
1.下载visualsvn for visual studio 2012/2013/2015/2017 2.查看是否安装成功 一 下载并安装插件 1.VisualSVN :VisualSVN-5.1. ...
- es3的语法来模拟es5的bind方法
// 简单版 Function.prototype.bind = function(context) { var self = this; return function() { self.apply ...