【CV】ICCV2015_Unsupervised Visual Representation Learning by Context Prediction
Unsupervised Visual Representation Learning by Context Prediction
Note here: it's a learning note on unsupervised learning model from Prof. Gupta's group.
Motivation:
- Similar to most motivations of unsupervised learning method, cut it out here.
Proposed Model:
- Given one central patch of the object, and another one arounding it, the model must guess the relative spatial configuration between these two patches.
- Intuition: when human doing this assignment, we get higher accuracy once we recognize what object it is and what it’s like with a whole look. That is to say, a model plays well on this game would have percepted the features of each object.
(i.e. we can get right answer for the following quizz once we recognize what objects they are.)


So the unsupervised representation learning can also be formulated as learning an embedding where images that are semantically similar close, while semantically different ones are far apart.
- Pipline:
- Feed two patches into a parallel convolutional network which share parameters.
- Fuse the feature vector of each patch and pass through stacked fully connected layers.
- Come out with an eight-dimension vector that predicts relative spatial configuration between the two patches.
- Compute loss, gradients and back propagate through this network to update weights.

Aoiding “trivial” solutions:
We need to preprocess images to avoid the model learns some trivial features, like:
- Low-level cues like boundary patterns or textures continuing between patches, which could potentially serve as a shortcut.
- Chromatic aberration: it arises from differences in the way the lens focuses light and different wavelengths. In some cameras, one color channel (commonly green) is shrunk toward the image center relative to the others. Once the network learns the absolute location on the lens, solving the relatve location task becomes trivial.
【CV】ICCV2015_Unsupervised Visual Representation Learning by Context Prediction的更多相关文章
- 【CV】ICCV2015_Unsupervised Learning of Visual Representations using Videos
Unsupervised Learning of Visual Representations using Videos Note here: it's a learning note on Prof ...
- 【CV】ICCV2015_Unsupervised Learning of Spatiotemporally Coherent Metrics
Unsupervised Learning of Spatiotemporally Coherent Metrics Note here: it's a learning note on the to ...
- 论文解读《Momentum Contrast for Unsupervised Visual Representation Learning》俗称 MoCo
论文题目:<Momentum Contrast for Unsupervised Visual Representation Learning> 论文作者: Kaiming He.Haoq ...
- Microsoft Azure Web Sites应用与实践【3】—— 通过Visual Studio Online在线编辑Microsoft Azure 网站
Microsoft Azure Web Sites应用与实践 系列: [1]—— 打造你的第一个Microsoft Azure Website [2]—— 通过本地IIS 远程管理Microsoft ...
- Momentum Contrast for Unsupervised Visual Representation Learning (MoCo)
Momentum Contrast for Unsupervised Visual Representation Learning 一.Methods Previously Proposed 1. E ...
- Momentum Contrast for Unsupervised Visual Representation Learning
Momentum Contrast for Unsupervised Visual Representation Learning 一.Methods Previously Proposed 1. E ...
- 论文阅读(Xiang Bai——【arXiv2016】Scene Text Detection via Holistic, Multi-Channel Prediction)
Xiang Bai--[arXiv2016]Scene Text Detection via Holistic, Multi-Channel Prediction 目录 作者和相关链接 方法概括 创新 ...
- 【VBS】使用Visual Studio调试VBS程序
首先要确保机器上安装了Visual Stuido, 然后打开命令行窗口执行如下命令,会弹出是否使用Visual Studio进行调试的确认窗口. 点[是]进行调试. WScript.exe [vbs文 ...
- 论文阅读笔记(五)【CVPR2012】:Large Scale Metric Learning from Equivalence Constraints
由于在读文献期间多次遇见KISSME,都引自这篇CVPR,所以详细学习一下. Introduction 度量学习在机器学习领域有很大作用,其中一类是马氏度量学习(Mahalanobis metric ...
随机推荐
- Mysql基础之 事务
MySql事务 Mysql事务主要处理操作量大,复杂度高的数据. Mysql事务需要注意的三点: 1.在mysql中只有使用innodb数据库引擎的数据库或表才支持事务 2.事务处理可以用来维护数据库 ...
- git命令行解决冲突文件步骤
原文https://blog.csdn.net/zwl18210851801/article/details/79106448 亲测有用,解决git冲突的好办法 方法一(推荐使用): git pull ...
- jQuery.form 的最新版本是 3.14
http://www.oschina.net/news/32628/jquery-form-3-14 有日子没跟进 jQuery.form 插件了,该插件已经从 2.xx 更新到 3.xx 了,目前最 ...
- 项目Alpha冲刺 5
作业描述 课程: 软件工程1916|W(福州大学) 作业要求: 项目Alpha冲刺(团队) 团队名称: 火鸡堂 作业目标: 介绍第五天冲刺的项目进展.问题困难和心得体会 1.团队信息 队名:火鸡堂 队 ...
- Redis本身是单线程线程安全的内存数据库,但是不代表你的使用就是线程安全的
网上一个错误示例:https://www.cnblogs.com/Simeonwu/p/7881100.html,部分代码如下: package com.me.config; import redis ...
- canvas的drawImage函数
HTML5中引入新的元素canvas,其drawImage 方法允许在 canvas 中插入其他图像( img 和 canvas 元素) .drawImage函数有三种函数原型: drawImage( ...
- Linux下彻底卸载mysql详解
转自 http://www.jb51.net/article/97516.htm 一.使用以下命令查看当前安装mysql情况,查找以前是否装有mysql ? 1 rpm -qa|grep -i mys ...
- Ubuntu16.04下安装配置phpmyadmin
在项目配置了阿里的druid,可以监控session,spring和详细sql的执行情况以及具体到表等信息,但是仍然发现不够详细,而且作为一个半吊子dba,一直用linux命令分配权限和管理数据库,效 ...
- 拓扑优化中SIMP方法与水平集方法有何优缺点,水平集法变换到高维,不是更复杂了
作者:周平章链接:https://www.zhihu.com/question/52008623/answer/187927508来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...
- ros自定义消息的时候报错ImportError: No module named em
Traceback (most recent call last): File "/opt/ros/kinetic/share/gencpp/cmake/../../../lib/genc ...