Python3中PyMongo的用法
MongoDB存储
在这里我们来看一下Python3下MongoDB的存储操作,在本节开始之前请确保你已经安装好了MongoDB并启动了其服务,另外安装好了Python的PyMongo库。
连接MongoDB
连接MongoDB我们需要使用PyMongo库里面的MongoClient,一般来说传入MongoDB的IP及端口即可,第一个参数为地址host,第二个参数为端口port,端口如果不传默认是27017。
import pymongo
client = pymongo.MongoClient(host='localhost', port=27017)
这样我们就可以创建一个MongoDB的连接对象了。
另外MongoClient的第一个参数host还可以直接传MongoDB的连接字符串,以mongodb开头,例如:
client = MongoClient('mongodb://localhost:27017/')
可以达到同样的连接效果。
指定数据库
MongoDB中还分为一个个数据库,我们接下来的一步就是指定要操作哪个数据库,在这里我以test数据库为例进行说明,所以下一步我们需要在程序中指定要使用的数据库。
db = client.test
调用client的test属性即可返回test数据库,当然也可以这样来指定:
db = client['test']
两种方式是等价的。
指定集合
MongoDB的每个数据库又包含了许多集合Collection,也就类似与关系型数据库中的表,下一步我们需要指定要操作的集合,在这里我们指定一个集合名称为students,学生集合。还是和指定数据库类似,指定集合也有两种方式。
collection = db.students
collection = db['students']
插入数据
接下来我们便可以进行数据插入了,对于students这个Collection,我们新建一条学生数据,以字典的形式表示:
student = {
'id': '20170101',
'name': 'Jordan',
'age': 20,
'gender': 'male'
}
在这里我们指定了学生的学号、姓名、年龄和性别,然后接下来直接调用collection的insert()方法即可插入数据。
result = collection.insert(student)
print(result)
在MongoDB中,每条数据其实都有一个_id属性来唯一标识,如果没有显式指明_id,MongoDB会自动产生一个ObjectId类型的_id属性。insert()方法会在执行后返回的_id值。
运行结果:
5932a68615c2606814c91f3d
当然我们也可以同时插入多条数据,只需要以列表形式传递即可,示例如下:
student1 = {
'id': '20170101',
'name': 'Jordan',
'age': 20,
'gender': 'male'
}
student2 = {
'id': '20170202',
'name': 'Mike',
'age': 21,
'gender': 'male'
}
result = collection.insert([student1, student2])
print(result)
返回的结果是对应的_id的集合,运行结果:
[ObjectId('5932a80115c2606a59e8a048'), ObjectId('5932a80115c2606a59e8a049')]
实际上在PyMongo 3.X版本中,insert()方法官方已经不推荐使用了,当然继续使用也没有什么问题,官方推荐使用insert_one()和insert_many()方法将插入单条和多条记录分开。
student = {
'id': '20170101',
'name': 'Jordan',
'age': 20,
'gender': 'male'
}
result = collection.insert_one(student)
print(result)
print(result.inserted_id)
运行结果:
<pymongo.results.InsertOneResult object at 0x10d68b558>
5932ab0f15c2606f0c1cf6c5
返回结果和insert()方法不同,这次返回的是InsertOneResult对象,我们可以调用其inserted_id属性获取_id。
对于insert_many()方法,我们可以将数据以列表形式传递即可,示例如下:
student1 = {
'id': '20170101',
'name': 'Jordan',
'age': 20,
'gender': 'male'
}
student2 = {
'id': '20170202',
'name': 'Mike',
'age': 21,
'gender': 'male'
}
result = collection.insert_many([student1, student2])
print(result)
print(result.inserted_ids)
insert_many()方法返回的类型是InsertManyResult,调用inserted_ids属性可以获取插入数据的_id列表,运行结果:
<pymongo.results.InsertManyResult object at 0x101dea558>
[ObjectId('5932abf415c2607083d3b2ac'), ObjectId('5932abf415c2607083d3b2ad')]
查询
插入数据后我们可以利用find_one()或find()方法进行查询,find_one()查询得到是单个结果,find()则返回多个结果。
result = collection.find_one({'name': 'Mike'})
print(type(result))
print(result)
在这里我们查询name为Mike的数据,它的返回结果是字典类型,运行结果:
<class 'dict'>
{'_id': ObjectId('5932a80115c2606a59e8a049'), 'id': '20170202', 'name': 'Mike', 'age': 21, 'gender': 'male'}
可以发现它多了一个_id属性,这就是MongoDB在插入的过程中自动添加的。
我们也可以直接根据ObjectId来查询,这里需要使用bson库里面的ObjectId。
from bson.objectid import ObjectId
result = collection.find_one({'_id': ObjectId('593278c115c2602667ec6bae')})
print(result)
其查询结果依然是字典类型,运行结果:
{'_id': ObjectId('593278c115c2602667ec6bae'), 'id': '20170101', 'name': 'Jordan', 'age': 20, 'gender': 'male'}
当然如果查询结果不存在则会返回None。
对于多条数据的查询,我们可以使用find()方法,例如在这里查找年龄为20的数据,示例如下:
results = collection.find({'age': 20})
print(results)
for result in results:
print(result)
运行结果:
<pymongo.cursor.Cursor object at 0x1032d5128>
{'_id': ObjectId('593278c115c2602667ec6bae'), 'id': '20170101', 'name': 'Jordan', 'age': 20, 'gender': 'male'}
{'_id': ObjectId('593278c815c2602678bb2b8d'), 'id': '20170102', 'name': 'Kevin', 'age': 20, 'gender': 'male'}
{'_id': ObjectId('593278d815c260269d7645a8'), 'id': '20170103', 'name': 'Harden', 'age': 20, 'gender': 'male'}
返回结果是Cursor类型,相当于一个生成器,我们需要遍历取到所有的结果,每一个结果都是字典类型。
如果要查询年龄大于20的数据,则写法如下:
results = collection.find({'age': {'$gt': 20}})
在这里查询的条件键值已经不是单纯的数字了,而是一个字典,其键名为比较符号$gt,意思是大于,键值为20,这样便可以查询出所有年龄大于20的数据。
在这里将比较符号归纳如下表:
符号含义示例
$lt小于{'age': {'$lt': 20}}
$gt大于{'age': {'$gt': 20}}
$lte小于等于{'age': {'$lte': 20}}
$gte大于等于{'age': {'$gte': 20}}
$ne不等于{'age': {'$ne': 20}}
$in在范围内{'age': {'$in': [20, 23]}}
$nin不在范围内{'age': {'$nin': [20, 23]}}
另外还可以进行正则匹配查询,例如查询名字以M开头的学生数据,示例如下:
results = collection.find({'name': {'$regex': '^M.*'}})
在这里使用了$regex来指定正则匹配,^M.*代表以M开头的正则表达式,这样就可以查询所有符合该正则的结果。
在这里将一些功能符号再归类如下:
符号含义示例示例含义
$regex匹配正则{'name': {'$regex': '^M.*'}}name以M开头
$exists属性是否存在{'name': {'$exists': True}}name属性存在
$type类型判断{'age': {'$type': 'int'}}age的类型为int
$mod数字模操作{'age': {'$mod': [5, 0]}}年龄模5余0
$text文本查询{'$text': {'$search': 'Mike'}}text类型的属性中包含Mike字符串
$where高级条件查询{'$where': 'obj.fans_count == obj.follows_count'}自身粉丝数等于关注数
这些操作的更详细用法在可以在MongoDB官方文档找到:
https://docs.mongodb.com/manual/reference/operator/query/
计数
要统计查询结果有多少条数据,可以调用count()方法,如统计所有数据条数:
count = collection.find().count()
print(count)
或者统计符合某个条件的数据:
count = collection.find({'age': 20}).count()
print(count)
排序
可以调用sort方法,传入排序的字段及升降序标志即可,示例如下:
results = collection.find().sort('name', pymongo.ASCENDING)
print([result['name'] for result in results])
运行结果:
['Harden', 'Jordan', 'Kevin', 'Mark', 'Mike']
偏移
在某些情况下我们可能想只取某几个元素,在这里可以利用skip()方法偏移几个位置,比如偏移2,就忽略前2个元素,得到第三个及以后的元素。
results = collection.find().sort('name', pymongo.ASCENDING).skip(2)
print([result['name'] for result in results])
运行结果:
['Kevin', 'Mark', 'Mike']
另外还可以用limit()方法指定要取的结果个数,示例如下:
results = collection.find().sort('name', pymongo.ASCENDING).skip(2).limit(2)
print([result['name'] for result in results])
运行结果:
['Kevin', 'Mark']
如果不加limit()原本会返回三个结果,加了限制之后,会截取2个结果返回。
值得注意的是,在数据库数量非常庞大的时候,如千万、亿级别,最好不要使用大的偏移量来查询数据,很可能会导致内存溢出,可以使用类似find({'_id': {'$gt': ObjectId('593278c815c2602678bb2b8d')}}) 这样的方法来查询,记录好上次查询的_id。
更新
对于数据更新可以使用update()方法,指定更新的条件和更新后的数据即可,例如:
condition = {'name': 'Kevin'}
student = collection.find_one(condition)
student['age'] = 25
result = collection.update(condition, student)
print(result)
在这里我们将name为Kevin的数据的年龄进行更新,首先指定查询条件,然后将数据查询出来,修改年龄,之后调用update方法将原条件和修改后的数据传入,即可完成数据的更新。
运行结果:
{'ok': 1, 'nModified': 1, 'n': 1, 'updatedExisting': True}
返回结果是字典形式,ok即代表执行成功,nModified代表影响的数据条数。
另外update()方法其实也是官方不推荐使用的方法,在这里也分了update_one()方法和update_many()方法,用法更加严格,第二个参数需要使用$类型操作符作为字典的键名,我们用示例感受一下。
condition = {'name': 'Kevin'}
student = collection.find_one(condition)
student['age'] = 26
result = collection.update_one(condition, {'$set': student})
print(result)
print(result.matched_count, result.modified_count)
在这里调用了update_one方法,第二个参数不能再直接传入修改后的字典,而是需要使用{'$set': student}这样的形式,其返回结果是UpdateResult类型,然后调用matched_count和modified_count属性分别可以获得匹配的数据条数和影响的数据条数。
运行结果:
<pymongo.results.UpdateResult object at 0x10d17b678>
1 0
我们再看一个例子:
condition = {'age': {'$gt': 20}}
result = collection.update_one(condition, {'$inc': {'age': 1}})
print(result)
print(result.matched_count, result.modified_count)
在这里我们指定查询条件为年龄大于20,然后更新条件为{'$inc': {'age': 1}},也就是年龄加1,执行之后会讲第一条符合条件的数据年龄加1。
运行结果:
<pymongo.results.UpdateResult object at 0x10b8874c8>
1 1
可以看到匹配条数为1条,影响条数也为1条。
如果调用update_many()方法,则会将所有符合条件的数据都更新,示例如下:
condition = {'age': {'$gt': 20}}
result = collection.update_many(condition, {'$inc': {'age': 1}})
print(result)
print(result.matched_count, result.modified_count)
这时候匹配条数就不再为1条了,运行结果如下:
<pymongo.results.UpdateResult object at 0x10c6384c8>
3 3
可以看到这时所有匹配到的数据都会被更新。
删除
删除操作比较简单,直接调用remove()方法指定删除的条件即可,符合条件的所有数据均会被删除,示例如下:
result = collection.remove({'name': 'Kevin'})
print(result)
运行结果:
{'ok': 1, 'n': 1}
另外依然存在两个新的推荐方法,delete_one()和delete_many()方法,示例如下:
result = collection.delete_one({'name': 'Kevin'})
print(result)
print(result.deleted_count)
result = collection.delete_many({'age': {'$lt': 25}})
print(result.deleted_count)
运行结果:
<pymongo.results.DeleteResult object at 0x10e6ba4c8>
1
4
delete_one()即删除第一条符合条件的数据,delete_many()即删除所有符合条件的数据,返回结果是DeleteResult类型,可以调用deleted_count属性获取删除的数据条数。
更多
另外PyMongo还提供了一些组合方法,如find_one_and_delete()、find_one_and_replace()、find_one_and_update(),就是查找后删除、替换、更新操作,用法与上述方法基本一致。
另外还可以对索引进行操作,如create_index()、create_indexes()、drop_index()等。
详细用法可以参见官方文档:http://api.mongodb.com/python/current/api/pymongo/collection.html
另外还有对数据库、集合本身以及其他的一些操作,在这不再一一讲解,可以参见官方文档:http://api.mongodb.com/python/current/api/pymongo/
Python3中PyMongo的用法的更多相关文章
- Python3中的列表用法,看这一篇就够了
类似C语言中的列表用法 ---------------------------------------------------------------------------------------- ...
- Python3 中 configparser 模块用法
configparser 简介 configparser 是 Pyhton 标准库中用来解析配置文件的模块,并且内置方法和字典非常接近.Python2.x 中名为 ConfigParser,3.x 已 ...
- python3中zip()的用法
zip函数接受任意多个可迭代对象作为参数,将对象中对应的元素打包成一个tuple,然后返回一个可迭代的zip对象. 这个可迭代对象可以使用循环的方式列出其元素 若多个可迭代对象的长度不一致,则所返回的 ...
- python3中map()函数用法
python源码解释如下:map(func, *iterables) --> map objectMake an iterator that computes the function usin ...
- Python3中使用PyMongo的方法详解
前言 本文主要给大家介绍的是关于在Python3使用PyMongo的方法,分享出来供大家参考学习,下面话不多说了,来一起看看详细介绍: MongoDB存储 在这里我们来看一下Python3下Mongo ...
- Python3中使用Mysql的用法。
一.Python2中一般使用MySqldb来调用Mysql,但是在Python3中不支持该包,使用pymysql来代替了,用法一模一样. 二.安装: pip install pymysql 三.例子: ...
- Python3中正则模块re.compile、re.match及re.search函数用法详解
Python3中正则模块re.compile.re.match及re.search函数用法 re模块 re.compile.re.match. re.search 正则匹配的时候,第一个字符是 r,表 ...
- Python3 中hashlib及uuid的用法
Python3 中hashlib及uuid的用法: 可以生成随机ID import uuid import hashlib import time def creat_uuid(): return s ...
- Python3中内置类型bytes和str用法及byte和string之间各种编码转换,python--列表,元组,字符串互相转换
Python3中内置类型bytes和str用法及byte和string之间各种编码转换 python--列表,元组,字符串互相转换 列表,元组和字符串python中有三个内建函数:,他们之间的互相转换 ...
随机推荐
- ReactNative常用组件汇总
导航组件react-navigation: https://github.com/react-community/react-navigation 网络请求asios: https://github. ...
- 深入浅出 JVM GC(1)
# 前言 初级 Java 程序员步入中级程序员的有一个无法绕过的阶段------GC(Garbage Collection).作为 Java 程序员,说实话,很幸福,不用像 C 程序员那样,时刻关心着 ...
- using的几种用法
1.using指令.using + 命名空间名字,这样可以在程序中直接用命令空间中的类型,而不必指定类型的详细命名空间 例如:using System; 一般都会出现在*.cs中. 2.using ...
- ssh介绍
一.SSH概念(百度) SSH 为 Secure Shell 的缩写,由 IETF 的网络小组(Network Working Group)所制定:SSH 为建立在应用层基础上的安全协议.SSH ...
- 设置实体类型中String类型的属性值为String.Empty
/// <summary> /// 将String类型的属性值设置为String.Empty /// </summary> /// <typeparam name=&qu ...
- Java 多态 ——一个案例 彻底搞懂它
最近,发现基础真的hin重要.比如,Java中多态的特性,在学习中就是很难懂,比较抽象的概念.学的时候就犯糊涂,但日后会发现,基础在日常工作的理解中占有重要的角色. 下面,我将用一个代码实例,回忆和巩 ...
- thinkphp链接多个数据库时怎么调用M方法?
老项目tp3.1.3,有N个数据库,thinkphp好久没用了,不知道怎么用M方法了,代码测验成功! 数据库名称: 2.直接上代码 $custom = M('base','branch_','shop ...
- JS 判断是否是手机端并跳转操作
JS 判断运行当前脚本的应用程序是否为手机端或者一些其他信息,在我的工作中遇到的不是十分频繁,被我的同事一问就给问住了,所以把之前找到的一些知识点整理出来,供大家参考,若哪里不对欢迎指出,我会及时的更 ...
- Mysql数据库单表查询
1.单表查询语法 #查询数据的本质:mysql会到你本地的硬盘上找到对应的文件,然后打开文件,按照你的查询条件来找出你需要的数据.下面是完整的一个单表查询的语法 select * from,这个sel ...
- 理解jQuery中$.get、$.post、$.getJSON和$.ajax的用法
ajax的4种方法:$.get.$.post.$getJSON.$ajax. 1.$.get $.get()方法使用GET方式来进行异步请求,它的语法结构为: $.get( url [, data] ...