HDU 5352——MZL's City——————【二分图多重匹配、拆点||网络流||费用流】
MZL's City
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 710 Accepted Submission(s): 245
Her big country has N cities numbered from 1 to N.She has controled the country for so long and she only remebered that there was a big earthquake M years ago,which made all the roads between the cities destroyed and all the city became broken.She also remebered that exactly one of the following things happened every recent M years:
1.She rebuild some cities that are connected with X directly and indirectly.Notice that if a city was rebuilt that it will never be broken again.
2.There is a bidirectional road between city X and city Y built.
3.There is a earthquake happened and some roads were destroyed.
She forgot the exactly cities that were rebuilt,but she only knew that no more than K cities were rebuilt in one year.Now she only want to know the maximal number of cities that could be rebuilt.At the same time she want you to tell her the smallest lexicographically plan under the best answer.Notice that 8 2 1 is smaller than 10 0 1.
For each test,the first line contains three integers N,M,K(N<=200,M<=500,K<=200),indicating the number of MZL’s country ,the years happened a big earthquake and the limit of the rebuild.Next M lines,each line contains a operation,and the format is “1 x” , “2 x y”,or a operation of type 3.
If it’s type 3,first it is a interger p,indicating the number of the destoyed roads,next 2*p numbers,describing the p destoyed roads as (x,y).It’s guaranteed in any time there is no more than 1 road between every two cities and the road destoyed must exist in that time.
No city was rebuilt in the third year,city 1 and city 3 were rebuilt in the fourth year,and city 2 was rebuilt in the sixth year.
#include<bits/stdc++.h>
using namespace std;
const int maxn=550;
int Map[maxn][maxn];
int vis[maxn],parent[maxn];
int match[maxn],ans[maxn];
vector<int>G[maxn*maxn];
int num,N,divp,K;
void dfs(int u){ //找出跟要重建城市x的所有连通的城市
vis[u]=1;
parent[num++]=u; //记录所有连通城市编号
for(int i=1;i<=N;i++){
if(!vis[i]&&Map[u][i]){
dfs(i);
}
}
}
bool Find(int u){ //找增广路
for(int i=0;i<G[u].size();i++){
int v=G[u][i];
if(!vis[v]){
vis[v]=1;
if(!match[v]||Find(match[v])){
match[v]=u;
return true;
}
}
}
return false;
}
int Hungary(){ //匈牙利
int ret=0;
memset(ans,0,sizeof(ans));
memset(match,0,sizeof(match));
for(int i=divp-1;i>=0;i--){ //逆序跑匈牙利
for(int j=i*K;j<(i+1)*K;j++){
memset(vis,0,sizeof(vis));
if(Find(j)){
ret++;
ans[i]++;
}
}
}
return ret;
}
int main(){
int t,a,b,c,M,type,res;
scanf("%d",&t);
while(t--){
memset(Map,0,sizeof(Map));
num=0,divp=0;
scanf("%d%d%d",&N,&M,&K);
for(int i=0;i<M;i++){
scanf("%d",&type);
if(type==1){
num=0;
memset(vis,0,sizeof(vis));
scanf("%d",&a);
dfs(a);
for(int i=0;i<num;i++){ //跟要重建的城市连通的总城市数量
for(int j=K*divp;j<K*(divp+1);j++){//拆点
G[j].push_back(parent[i]); //从拆点向要重建的城市连边
}
}
divp++;
}else if(type==2){
scanf("%d%d",&a,&b);
Map[a][b]=Map[b][a]=1;
}else{
scanf("%d",&c);
for(int j=0;j<c;j++){
scanf("%d%d",&a,&b);
Map[a][b]=Map[b][a]=0;
}
}
}
res=Hungary();
printf("%d\n",res);
for(int i=0;i<divp;i++){ //顺序输出
printf("%d%c",ans[i],i==divp-1?'\n':' ');
}
for(int i=0;i<=K*divp+K;i++){
G[i].clear();
}
}
return 0;
}
网络流:
对于网络流建图,我们建立一个超级源点,超级汇点。然后从源点向所有的操作一连边,容量为k。从所有城市向汇点连边,容量为1。我们逆序从相应的操作一向所要重建的城市连通块中每个城市连边,容量为1,然后跑最大流,这样能保证字典序最小。
#include<bits/stdc++.h>
using namespace std;
const int maxn=750;
const int INF=0x3f3f3f3f;
struct Edge{
int from,to,cap,flow;
};
int Map[maxn][maxn];
int vis[maxn];
vector<int>GG[maxn];
int nn; struct Dinic{
int n,m,s,t;
vector<Edge>edges;
vector<int>G[maxn];
bool vis[maxn];
int d[maxn];
int cur[maxn];
void AddEdge(int from,int to,int cap){
edges.push_back((Edge){from,to,cap,0});
edges.push_back((Edge){to,from,0,0});
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BFS(){ //构造分层网络
int x,i;
memset(vis,0,sizeof(vis));
queue<int>Q;
Q.push(s);
d[s]=0;
vis[s]=1;
while(!Q.empty()){
x=Q.front(),Q.pop();
for(i=0;i<G[x].size();i++){
Edge & e =edges[G[x][i]];
if(!vis[e.to]&&e.cap>e.flow){
vis[e.to]=1;
d[e.to]=d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];
}
int DFS(int x,int a){ //沿阻塞流增广
if(x==t||a==0)
return a;
int flow=0,f;
for(int &i=cur[x];i<G[x].size();i++){
Edge & e=edges[G[x][i]];
if(d[x]+1==d[e.to]&&(f=DFS(e.to,min(a,e.cap-e.flow)))>0){
e.flow+=f;
edges[G[x][i]^1].flow-=f;
flow+=f;
a-=f;
if(a==0)
break;
}
}
return flow;
}
int Maxflow(int s,int t){
this->s=s,this->t=t;
int flow=0;
while(BFS()){
memset(cur,0,sizeof(cur));
flow+= DFS(s,INF);
}
return flow;
}
};
void dfs(int st,int u){ //找出跟城市u形成的连通块中的所有城市
GG[st].push_back(u);
vis[u]=1;
for(int i=1;i<=nn;i++){
if(!vis[i]&&Map[u][i]){
dfs(st,i);
}
}
}
int main(){
int m,k,ss,tt,rebnum;
int t;
int ST,EN;
int res[320];
scanf("%d",&t);
while(t--){
memset(Map,0,sizeof(Map));
rebnum=0;
scanf("%d%d%d",&nn,&m,&k);
Dinic tmp;
int x,y,typ;
for(int i=0;i<m;i++){
scanf("%d",&typ);
if(typ==2){
scanf("%d%d",&x,&y);
Map[x][y]=Map[y][x]=1;
}else if(typ==3){
int ck=0;
scanf("%d",&ck);
for(int k=0;k<ck;k++){
scanf("%d%d",&x,&y);
Map[x][y]=Map[y][x]=0;
}
}else{
rebnum++; //操作一的次数
GG[rebnum].clear();
memset(vis,0,sizeof(vis));
scanf("%d",&x);
dfs(rebnum,x); //找出跟该次操作一直接或间接相连的城市
}
}
ST=0,EN=rebnum+nn+1;
for(int i=1;i<=rebnum;i++){ //源点跟操作一建容量为k的边
tmp.AddEdge(ST,i,k);
}
for(int i=1;i<=nn;i++){ //城市跟汇点建容量为1的边
tmp.AddEdge(i+rebnum,EN,1);
}
int ans=0;
for(int i=rebnum;i>=1;i--){ //逆序枚举操作一
for(int j=0;j<GG[i].size();j++){
int v=GG[i][j];
tmp.AddEdge( i, v+rebnum, 1); //将每次的操作一跟直接或间接可重建的城市建边容量为1
}
res[i]=tmp.Maxflow(ST,EN); //记录每次的流量
ans+=res[i]; //总流量
}
printf("%d\n",ans);
for(int i=1;i<=rebnum;i++){ //顺序输出结果
printf("%d%c",res[i], i==rebnum? '\n':' ');
}
}
return 0;
}
最小费用流:从源点依次向操作一建边,容量为k,费用从rebnum -> 0。从所有城市向汇点连边,容量为1,费用为0。从每个操作一向相应的城市连通块中所有城市连边,容量为1,费用为0。
#include<bits/stdc++.h>
using namespace std;
const int maxn = 750;
const int INF =0x3f3f3f3f;
struct Edge{
int from,to,cap,flow,cost;
};
struct MCMF{ //最小费用流:保证在最大流量的前提下,总费用最小
int n,m,s,t;
vector<Edge>edges;
vector<int>G[maxn];
int inq[maxn];
int d[maxn];
int p[maxn];
int a[maxn];
void init(int n){
this-> n= n;
for(int i=0;i<n;i++)
G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap,int cost){
edges.push_back((Edge){from,to,cap,0,cost});
edges.push_back((Edge){to,from,0,0,-cost});
m=edges.size();
G[from].push_back(m-2);
G[to].push_back(m-1);
}
bool BellmanFord(int s,int t,int &flow,int &cost){ //用Bellman代替BFS找s-t的最短路
for(int i=0;i<n;i++) d[i]=INF;
memset(inq,0,sizeof(inq));
d[s]=0;inq[s]=1;p[s]=0;a[s]=INF;
queue<int>Q;
Q.push(s);
while(!Q.empty()){
int u=Q.front();Q.pop();
inq[u]=0;
for(int i=0;i<G[u].size();i++){
Edge & e= edges[G[u][i]];
if(e.cap > e.flow &&d[e.to] > d[u]+e.cost){
d[e.to]= d[u] + e.cost;
p[e.to]=G[u][i];
a[e.to]= min(a[u],e.cap-e.flow);
if(!inq[e.to]){
Q.push(e.to);
inq[e.to]=1;
}
}
}
}
if(d[t]== INF) return false;
flow+=a[t];
cost += d[t]* a[t];
int u = t ;
while(u != s){
edges[p[u]].flow += a[t];
edges[p[u]^1].flow -= a[t];
u = edges[p[u]].from;
}
return true;
}
int Mincost(int s,int t){
int flow = 0, cost = 0;
while(BellmanFord ( s, t, flow, cost));
// return cost; // 可以返回最小花费
return flow; //返回最大流量
}
};
int n;
int Map[maxn][maxn],vis[maxn];
vector<int>Vc[maxn];
void dfs(int rb,int u){
Vc[rb].push_back(u);
vis[u]=1;
for(int i=1;i<=n;i++){
if(!vis[i]&&Map[u][i]){
dfs(rb,i);
}
}
}
int main(){
int t,ST,EN,m,k;
scanf("%d",&t);
while(t--){
memset(Map,0,sizeof(Map));
MCMF tmp;
scanf("%d%d%d",&n,&m,&k);
int x,y,rebnum=0,typ;
for(int i=0;i<m;i++){
scanf("%d",&typ);
if(typ==2){
scanf("%d%d",&x,&y);
Map[x][y]=Map[y][x]=1;
}else if(typ==3){
int ck;
scanf("%d",&ck);
for(int j=0;j<ck;j++){
scanf("%d%d",&x,&y);
Map[x][y]=Map[y][x]=0;
}
}else {
rebnum++;
scanf("%d",&x);
Vc[rebnum].clear();
memset(vis,0,sizeof(vis));
dfs(rebnum,x);
}
}
ST=0,EN=rebnum+n+1;
tmp.init(EN+1);
for(int i=1;i<=rebnum;i++){ //从源点向操作一建边,容量为k,费用依次减小以保证字典序最小
tmp.AddEdge(ST,i,k,rebnum-i);
}
for(int i=1;i<=n;i++){ //从所有城市向汇点建边,容量为1,费用为0
tmp.AddEdge(i+rebnum,EN,1,0);
}
int ans=0,res[250];
for(int i=rebnum;i>=1;i--){ //逆向建边。
for(int j=0;j<Vc[i].size();j++){
int v=Vc[i][j];
tmp.AddEdge(i,rebnum+v,1,0); //从操作一向所有跟该次操作一直接或间接连接的城市建边,容量为1,费用为0
}
res[i]=tmp.Mincost(ST,EN); //类中这次返回的是最大流量,而不是最小费用
ans+=res[i];
}
printf("%d\n",ans);
for(int i=1;i<=rebnum;i++){
printf("%d%c",res[i],i==rebnum? '\n':' ');
}
}
return 0;
}
HDU 5352——MZL's City——————【二分图多重匹配、拆点||网络流||费用流】的更多相关文章
- Hdu 5352 MZL's City (多重匹配)
题目链接: Hdu 5352 MZL's City 题目描述: 有n各节点,m个操作.刚开始的时候节点都是相互独立的,一共有三种操作: 1:把所有和x在一个连通块内的未重建过的点全部重建. 2:建立一 ...
- HDU 5352 MZL's City (2015 Multi-University Training Contest 5)
题目大意: 一个地方的点和道路在M年前全部被破坏,每年可以有三个操作, 1.把与一个点X一个联通块内的一些点重建,2.连一条边,3.地震震坏一些边,每年最多能重建K个城市,问最多能建多少城市,并输出操 ...
- 2015 Multi-University Training Contest 5 hdu 5352 MZL's City
MZL's City Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- HDU 5352 MZL's City
最小费用最大流,因为要控制字典序,网络流控制不好了...一直WA,所以用了费用流,时间早的费用大,时间晚的费用少. 构图: 建立一个超级源点和超级汇点.超级源点连向1操作,容量为K,费用为COST,然 ...
- poj 2289 Jamie's Contact Groups【二分+最大流】【二分图多重匹配问题】
题目链接:http://poj.org/problem?id=2289 Jamie's Contact Groups Time Limit: 7000MS Memory Limit: 65536K ...
- hdu 3605(二分图多重匹配)
Escape Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Subm ...
- HDU - 3605 Escape (缩点+最大流/二分图多重匹配)
题意:有N(1<=N<=1e5)个人要移民到M(1<=M<=10)个星球上,每个人有自己想去的星球,每个星球有最大承载人数.问这N个人能否移民成功. 分析:可以用最大流的思路求 ...
- HDU 1669 二分图多重匹配+二分
Jamie's Contact Groups Time Limit: 15000/7000 MS (Java/Others) Memory Limit: 65535/65535 K (Java/ ...
- HDU 3605 Escape(二分图多重匹配问题)
Escape Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Subm ...
随机推荐
- WCF寄宿控制台.WindowsService.WinFrom.WebAPI寄宿控制台和windows服务
先建立wcf类库.会默认生成一些试用代码.如下: public class Service1 { public string GetData(int value) { return string.Fo ...
- 在GridView控件FooterTemplate内添加记录 Ver2
中午有发表一篇博文<在GridView控件FooterTemplate内添加记录> http://www.cnblogs.com/insus/p/3269908.html 添加铵钮是放在F ...
- [Windows] 程序生成出现语法错误: 意外的令牌“标识符”,预期的令牌为“类型说明符”
程序生成出现语法错误: 意外的令牌“标识符”,预期的令牌为“类型说明符” 将平台工具集改为VS 2015 (v140) ,重新编译即可
- A Plug for UNIX UVA - 753(网络流)
题意:n个插座,m个设备及其插头类型,k种转换器,没有转换器的情况下插头只能插到类型名称相同的插座中,问最少剩几个不匹配的设备 lrj紫书里面讲得挺好的. 先跑一遍floyd,看看插头类型a能否转换为 ...
- jzoj4915. 【GDOI2017模拟12.9】最长不下降子序列 (数列)
题面 题解 调了好几个小时啊--话说我考试的时候脑子里到底在想啥-- 首先,这个数列肯定是有循环节的,而且循环节的长度\(T\)不会超过\(D\) 那么就可以把数列分成三份,\(L+S+R\),其中\ ...
- P1556 幸福的路
题意:平面内有N头牛$N\le 10$john从(0,0)出发,最后回到(0,0) 只有走到牛那里john才可以改变方向,否则沿着直线走 问john经过每一头牛并且在每一头牛出恰好改变方向一次的方案( ...
- PHP删除目录下的空目录
function rm_empty_dir($path){ if(is_dir($path) && ($handle = opendir($path))!==false){ ...
- zookeeper分布式锁简单实现(JavaApi)
1.创建会话连接 package com.karat.cn.zookeeperAchieveLock.javaapilock; import org.apache.zookeeper.WatchedE ...
- 华东交通大学2015年ACM“双基”程序设计竞赛1004
Problem D Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Sub ...
- LeeCode(No4 - Median of Two Sorted Arrays)
There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two ...